Из чего состоит колонка

Схема, устройство колонок

Как известно, для воспроизведения звуковых волн в большинстве акустических систем применяются динамические излучатели, или динамики. Они занимаются преобразованием электрического тока в звуковые волны путем движения специальной мембраны. Но сами по себе они не могут образовывать звук достаточно высокого качества – в комплекте с ними идет целый комплекс электротехнических устройств, заставляющих динамик работать. Если все эти детали встроены в корпус источника звука – магнитофона или телевизора – в области низких частот широкополосные динамики работают менее эффективно. Звук наполняется искажениями из-за резонансного эффекта.

Чтобы микросхемы, трансформаторы и полупроводники не мешали звуковым волнам, в большинстве современных акустических систем динамические излучатели выносятся в отдельные корпуса – колонки. Разнообразие их форм-факторов, дизайна и прочих особенностей исполнения велико, но все они имеют ряд общих черт. Как же устроены привычные для большинства пользователей колонки?

Корпус

На первый взгляд может показаться, что корпус – это маловажная часть колонок, и то, как он выглядит и из чего сделан, имеет мало разницы. На самом же деле, правильная форма и материал исполнения корпуса колонок играет одну из важнейших ролей в деле производства высококачественного звука.

Все, как и было упомянуто вначале, упирается в резонанс и его эффект. От особенностей конструкции корпуса сильно зависит сила этих эффектов – наложений частот, посторонних звуков, особенно дребезжания.

В целом, корпус выполняет следующие задачи:

  • устраняет акустическое короткое замыкание, улучшая качество воспроизведение низкочастотного звука;
  • разделяет отдельные динамики в пространстве, мешая им негативно воздействовать друг на друга;
  • создание условий для акустической усадки динамических излучателей;
  • эстетическая роль – придание колонке определенной формы и стиля.

Для полноценного выполнения этих задач перед инженерами стоит задача правильно подобрать форму и материал, из которого будет изготовлена коробка для размещения излучателя, а также правильно расположить в пространстве все детали устройства.

Форма корпуса может быть самой разной, и от правильного ее подбора сильно зависит эффективность создания звуковых волн. Варианты могут быть следующими:

  • Прямоугольник – стандартные колонки обычно именно такие, могут быть в форме параллелепипеда или куба. Несмотря на свою традиционность, такие колонки издают далеко не идеальный звук, поскольку прямоугольная форма располагает к созданию резонанса и сопутствующих ему эффектов.
  • Форма с непрямыми углами – трапеция, пирамида.
  • Круглые формы – эллипс или шар. Для широкополосных колонок скругленные стенки подходят лучше всего.

Таким образом, для обычных колонок, которые отвечают за основной диапазон звуковых частот, наиболее пригодны круглые формы. Эта особенность часто используется инженерами для компенсации качества дешевых колонок. В них передняя стенка делается прямой, а задняя и боковые объединяются в одну изогнутую поверхность, что позволяет эффективно отражать и направлять звуковые волны в сторону слушателя.

Сабвуферы же чаще кубические – это связано с особенностями воспроизведения низких частот. Также в них гораздо чаще, чем в обычные колонки, встраивается фазоинвертор – полая труба, насквозь проходящая сквозь одну из стенок и фокусирующая звуковые волны.

Материалы так же могут быть разными. В основном это, конечно, пластмасса или древесина разных типов. Могут встречаться следующие варианты исполнения корпуса колонок:

  • ДВП, ДСП, фанера средней плотности. Колонки из продуктов деревоперерабатывающей промышленности получаются, по мнению многих аудиолюбителей, наиболее качественными и издают мягкие, чистые звуки. Однако используется такой вариант не слишком часто – особенно он был распространен в старых советских акустических системах. Колонки из дерева получаются массивными, поэтому они чаще всего напольные.
  • Дорогие специальные полимеры. Несмотря на худшие показатели звукоизоляции, пластик, разработанный специально для производства колонок, неплохо подходит для формирования корпусов этих устройств. Однако устройства из высококачественного пластика имеют весьма высокую стоимость.
  • Дешевый пластик – обыкновенный полистирол. Такие колонки зачастую совсем не поглощают звук, что приводит к множеству посторонних шумов. На большой громкости гулы и гудения слышны особенно отчетливо.

Изнутри стенки корпуса обычно отделываются дополнительным звукоизоляционным материалом – чаще всего самым простым поролоном. Это позволяет несколько улучшить характеристики даже самого дешевого материала.

Динамики

Динамические излучатели – это главная часть схемы устройства колонок. Именно они занимаются производством звуковых волн. Динамика их заключается в работе подвижной катушки. Как же работает эта часть колонки?

Схема динамика довольно проста, в нее входят самые основные электротехнические части.

Работает весь этот комплекс деталей также весьма просто. На корпусе колонки надежно закрепляется постоянный магнит – в отличие от электромагнита, это позволяет непрерывно создавать магнитное поле в любых условиях. В дешевых моделях используются старые материалы – магниты из обычного феррита. Более современные, технологичные и дорогие колонки оснащаются качественными неодимовыми магнитами, создающими статичное поле. Несравнимо более высокое качество таких устройств и до сих пор не слишком широкая их распространенность позволяет производителям указывать использование неодима как отличительную особенность своей продукции.

Постоянное магнитное поле окружает катушку из медного провода, находящегося под действием переменного тока, исходящего от электрической сети, аккумулятора или USB-порта в зависимости от типа колонок. Стоит отметить, что устройства работают с высокоуровневыми токами – напряжение измеряется в вольтах, десятках и, в некоторых случаях, даже тысячами вольт, а сила тока – в амперах и десятках ампер. Это создает необходимость для обеспечения линейности сигнала.

Поток электронов модулируется акустическим сигналом и, в соответствие с законами физики, создает вокруг себя электромагнитное поле. Его взаимодействие со статичным полем от постоянного магнита придает катушке динамику. Движение катушки, в свою очередь, приводит к вибрированию диффузорной мембраны, вибрации вызывают колебания воздуха, которые и воспринимаются человеческим ухом как звук.

Материал исполнения мембраны может быть разным: используются как искусственные полимеры, так и натуральные соединения, например целлюлоза. В дорогих моделях колонок может применяться тонкая титановая пластина. От этого параметра, конечно, сильно зависит качество издаваемого динамическим излучателем звука.

Динамики различаются по воспроизводимому ими диапазону звуковых частот. Существуют следующие виды излучателей:

  • низкочастотные (сабвуферы) – излучают звук в диапазоне 20-120 Гц;
  • среднечастотные – занимаются воспроизведением основной массы звука, вплоть до 5 кГц;
  • высокочастотные (твиттеры) – излучают самые высокие звуки, от 2 до 20 кГц в зависимости от технических особенностей.

Все эти динамики различаются не только особенностями исполнения элементов конструкции, но и размерами. Так, сабвуфер обычно самый большой – от величины его диаметра зависит качество исполнения низких частот. Твиттер, наоборот, маленький, чтобы волны получались как можно более короткими.

Усилитель

Колонки могут быть активными или пассивными. В колонки первого типа встраивается собственный усилитель звука – устройство, которое преобразовывает поступающий сигнал, подстраивая его под мощность колонок. Без усиления колонки звучали бы слишком тихо.

Если используемые колонки относятся к пассивному типу, усилитель подключается к ним отдельно посредством акустических кабелей с клеммами. Усилители бывают разными и не только занимаются собственно преобразованием мощности сигнала, но и сбором и объединением сигналов от разных колонок в многоканальных акустических системах. Помимо усилителя, преобразованием может заниматься такое устройство, как ресивер.

Применение правильных материалов, снижение силы искажений звука приводит к существенному повышению качества акустической системы. Инженеры обязаны уделять разработке колонок максимум внимания, ведь колонки должны не просто издавать звук – их задача состоит в том, чтобы правильно создать звуковое поле, соответствующее десятку реальных источников звука, используя всего лишь несколько громкоговорителей.

Другие статьи раздела Колонки: устройство, характеристики

Важные характеристики колонок

Несмотря на весьма распространенное мнение, что на качество акустической системы влияет буквально каждый ее элемент: источник звука, ресивер, усилитель и даже сами акустические провода и кабели, звук. 15919

Размеры колонок, мощность колонок

Ассортимент колонок – устройств, являющихся совокупностью динамических излучателей, их корпусов и дополнительной электроники – на сегодняшнем рынке неимоверно широк. В магазинах можно встретить самые. 9705

Активные и пассивные колонки

На удобство пользования акустической системой, а также на сложность подключения ее элементов друг к другу и способ введения системы в эксплуатацию влияет целый ряд параметров. Это и количество. 378278

Популярные статьи

Наушники – это весьма простые устройства, и, как правило, они надежно защищены от различных. 2863082

Динамический излучатель – это та часть колонки или наушников, которая, собственно, и занимается. 2848266

Всем хочется, чтобы любимая, бережно собранная акустическая система всегда издавала только. 1697264

На сегодняшнем рынке акустической техники представлено множество звуковых систем – они могут быть. 1453452

Среднечастотный динамик, или иначе его еще называют mid-range, воспроизводит частоты в диапазоне от. 1399152

Как известно, для воспроизведения звуковых волн в большинстве акустических систем применяются. 1034970

Наушники, как и любая акустическая техника, не застрахованы от поломок. Разные наушники имеют. 900932

Колонки любого типа, как и любая техника, нуждаются в бережном обращении и правильном уходе. Это. 698182

Из чего состоит компьютерная колонка: ее схема и как она устроена

Всем привет! Если вы хоть немного разбираетесь в электронике, схема компьютерных колонок не будет для вас чем-то сложным. При наличии прямых рук, паяльника и необходимых компонентов, собрать такой девайс можно и самостоятельно, было бы желание.

p, blockquote 1,0,0,0,0 –>

В этом посте мы рассмотрим принципиальную схему простейшей колонки для ПК – из чего состоят такие устройства и какие функции выполняет каждый узел. О том, как работают звуковые колонки и про их функции, читайте здесь.

p, blockquote 2,0,0,0,0 –>

Блок питания

Как любому электронному устройству, компьютерной колонке для работы требуется электрическая энергия. Встроенный блок питания преобразует переменный ток в постоянный, который необходим для работы девайса. От мощности самих колонок зависит мощность блока питания.

p, blockquote 3,0,0,0,0 –>

Существуют компактные колонки с питанием от USB. Разъем, который подключается к соответствующему порту, подает на устройство постоянный ток, поэтому выпрямитель здесь отсутствует.Такие колонки можно использовать не только в связке с компом или ноутбуком, но и смартфоном или планшетом. Для питания используется разборная зарядка от гаджета со встроенным USB портом.

p, blockquote 4,0,0,0,0 –>

Аудиовход

Все компьютерные колонки подключаются к источнику сигнала посредством джека 3,5 мм – именно такой порт встроен в звуковую плату на материнке и в большинство внешних звуковых плат.

p, blockquote 5,0,0,0,0 –>

Конечно, существуют звуковухи со специфическими портами, поэтому и оборудование требуется подключать соответствующее. Самый распространенный тип интерфейса у профессиональных акустических систем – джек 6,3 мм.

p, blockquote 6,0,1,0,0 –>

Передающий сигнал кабель может быть припаян «наглухо» к усилителю звукового сигнала или подключаться отдельно – как правило, с помощью штекеров RCA.

p, blockquote 7,0,0,0,0 –>

Между собой колонки соединяются или с помощью таких же разъемов, или обычным проводом с оголенными концами, который фиксируется с помощью специальных защелок. Кроме того, соединяющие кабеля могут быть также «намертво» приделаны к корпусу и быть неразъемными.

p, blockquote 8,0,0,0,0 –>

Усилитель сигнала

Этот узел присутствует только у активных акустических экземплярах – пассивные подключаются к внешнему усилителю. Подавляющее большинство современных компьютерных вариантов, в том числе формата 7.1 с сабвуфером и шестью сателлитами, тоже активные.

p, blockquote 9,0,0,0,0 –>

Задача усилителя – сделать слабый сигнал, который подается со звуковой платы, достаточно мощным для используемых в акустической системе динамиков. Кроме того, для усилителя сигнала характерна еще одна роль – он фильтрует входящий сигнал, удаляя лишние шумы, и выравнивает его по частотному диапазону.

p, blockquote 10,0,0,0,0 –>

Как правило, на фронтальной панели усилителя сигнала присутствуют элементы управления – как минимум, кнопка включения питания, регуляторы громкости и низких частот.

p, blockquote 11,0,0,0,0 –>

Схема простейшего усилителя для акустической системы:

p, blockquote 12,0,0,0,0 –>

Кроссовер

Этот элемент используется в многополосных вариантах, состоящих из нескольких динамиков. Он разделяет усиленный входящий сигнал на частоты, соответственно рабочему диапазону каждого излучателя. В бюджетных колонках, оборудованных одним динамиком, такого элемента нет.

p, blockquote 13,1,0,0,0 –>

Процессор

Элемент используется только в качественных аудиосистемах. Он декодирует многоканальный звук, согласно используемому колонками формату – например, Dolby Digital для систем 5,1 или Dolby Surroundдля акустики 7,1.

Читайте также:  Отопление в частном доме электрическое своими руками

p, blockquote 14,0,0,0,0 –>

Динамики

Динамические излучатели – сердцевина и основной компонент любой аудио системы. Современная стандартная колонка средней ценовой категории оборудована внутри как минимум двумя динамиками – для низких и высоких частот соответственно.

p, blockquote 15,0,0,0,0 –>

Связано это с тем, что разные динамики не одинаково воспроизводят звук разной частоты – чем она ниже, тем больше должен быть диаметр динамика. В системах с сабвуфером НЧ излучатель вынесен в отдельный корпус, чтобы он не мешал звучанию остальных.

p, blockquote 16,0,0,0,0 –>

Сегодня на рынке присутствуют акустические системы с двумя типами динамиков. В первом типе используется конусный излучатель, так называемый диффузор, принцип действия которого базируется на взаимодействии магнитного поля электрической катушки с полем постоянного магнита.На выходе получается мощный звук и сочные басы.

p, blockquote 17,0,0,0,0 –>

Второй тип динамиков вместо диффузора использует плоскую мембрану. Такие излучатели существенно проигрывают в мощности, но зато обладают весьма компактными габаритами. Это делает их весьма эффективными при создании портативных акустических систем.

p, blockquote 18,0,0,0,0 –>

Также они используются в бюджетной акустике в связке с сабвуфером.

p, blockquote 19,0,0,0,0 –>

Корпус

Большинство современных компьютерных колонок спроектировано по принципу «пустого ящика» (читайте детальнее об истории создания колонки). Вопреки распространенному заблуждению, корпус – не просто коробка, в которой покоятся динамики. Он выполняет такие задачи:

p, blockquote 20,0,0,1,0 –>

  • Изолирует динамики, не давая им влиять на работу друг друга;
  • Предотвращает акустическое короткое замыкание, улучшая звук на низких частотах;
  • Создает условия для акустической усадки излучателей;
  • Придает внешнему виду устройства определенный стиль.

Конечно, речь идет о качественных колонках, спроектированных согласно законам акустики. У бюджетных «пищалок» единственное назначение корпуса – удерживать динамики.

p, blockquote 21,0,0,0,0 –>

У более же качественных колонок, конструкторы проводят эксперименты со строением и формой корпуса, добавляют диффузоры, лабиринты и прочие элементы, которые улучшают качество звука.

p, blockquote 22,0,0,0,0 –>

У самых дешевых колонок, корпус изготовлен из самого дешевого пластика. В более качественных моделях используются качественные виды полимерных материалов. Ну, а у самых дорогих колонок, корпус, как правило, из ДСП, ДВП, фанеры или натурального дерева.

p, blockquote 23,0,0,0,0 –>

И на «закуску» – электрическая схема простейшей колонки:Вот, собственно, и все на тему того, как устроена и работает колонка. Также для вас могут оказаться полезными публикации о том, какие бывают акустические системы. Буду благодарен всем, кто расшарит эту статью в социальных сетях.

p, blockquote 24,0,0,0,0 –>

И не забывайте, что, подписавшись на новостную рассылку, вы сможете получать уведомления о новых постах в моем блоге. До завтра!

p, blockquote 25,0,0,0,0 –>

p, blockquote 26,0,0,0,0 –> p, blockquote 27,0,0,0,1 –>

3 самые необычные акустические системы

В большинстве случаев во всем мире музыку воспроизводят электродинамические громкоговорители, или, в обиходе, динамики. Однако конструкции этих устройств уже 122 года и в ней есть свои недостатки.

Динамик состоит из магнита и звуковой катушки, которая колеблется в магнитном поле и передает движение на диффузор. Последний должен быть очень легким и одновременно прочным. Чем легче диффузор — тем быстрее он будет колебаться и отыгрывать быстрые звуки — барабаны будут четче, бас собраннее и т.п. Чем он прочнее, тем меньше будет искажений, поскольку мембрана будет меньше изгибаться при работе.

Но даже самые качественные динамики дают в десятки раз больше искажений, чем современные усилители и звуковые карты. Многолетние эксперименты с различными сплавами и композитными материалами улучшили положение, но не сделали прорыва. «Куда это годится?!» — воскликнули инженеры и создали альтернативные конструкциии для воспроизведения звука.

Электростатические колонки

Самый распространенный тип нестандартных громкоговорителей, фундаментом для создания которых стал принцип электростатического взаимодействия. Между двух решеток-статоров натянута мембрана из сверхлегкого материала с проводящим напылением. Она до 10 раз тоньше человеческого волоса, а ее масса немногим больше массы окружающего ее воздуха. На решетки подается многократно усиленный звуковой сигнал, мембрана колеблется между ними и воспроизводит звук с рекордно низким коэффициентом нелинейных искажений — до 0,05 %! В итоге излучатель отыгрывает очень детальный и прозрачный звук, в котором слышен каждый нюанс.

Сама технология появилась еще в конце позапрошлого столетия. Однако долго не удавалось создать достаточно легкую мембрану для такой акустики. Поэтому первые электростатические колонки для массового рынка — Quad Electrostatic — вышли лишь в 1957 году и произвели маленькую революцию на рынке звукотехники. Они давали настолько честный звук, что стали использоваться даже в студиях. Звукорежиссер Филипп Нюэлл в книге Project-студии пишет:

Мониторы Quad Electrostatic 1957 года всё ещё могут постоять за себя. За последние 40 лет не было создано ничего существенно лучшего.

Однако электростаты не лишены недостатков. Во-первых, они излучают звук в обе стороны. Поэтому вдоль стены их не поставишь — звук от нее будет отражаться и вносить фазовые искажения. Понадобится большое помещение. Но даже в большой комнате будут взаимовычитаться басовые волны, ведь их длина — десятки метров.

Отсюда второй недостаток — мало баса. Дело усугубляется и тем, что излучать басовые волны может лишь очень большая мембрана, производить которую будет уже невыгодно, поэтому амплитудно-частотная характеристика (АЧХ) большинства электростатов имеет спад в районе 60-70 Гц. Для студийных мониторов ближнего поля — в самый раз, а вот для рядового потребителя может быть маловато.

Третий недостаток — узкая направленность излучателя из-за плоской мембраны. То есть, звучат колонки хорошо, но только на участке в 1м2. И, наконец, электростатические колонки требуют мощного и дорогого усилителя для работы.

Производители современных электростатов научились решать некоторые из этих проблем. Излучатели сегодня делают не плоскими, а полукруглыми, чтобы звук распространялся по комнате равномерно. В систему теперь добавляют низкочастотный динамик, который дает глубокий бас.

Однако эти и другие инженерные ухищрения вместе с требуемой при производстве прецизионной точностью и специфическими материалами сделали и без того недешевую конструкцию еще менее доступной для широких масс. АС такого типа стоят десятки тысяч долларов.

Контрапертурные аудиосистемы

Контрапертурные акустические системы по праву можно назвать одними из самых экзотических. Их конструкция состоит из двух одинаковых динамиков, расположенных вертикально строго друг напротив друга. Звуковые волны сталкиваются абсолютно синхронно и излучают результирующую волну во всех направлениях. Иными словами, получается всенаправленная акустика, которая равномерно заполняет собой звуком все пространство в комнате. Нет необходимости искать оптимальную комфортную зону прослушивания, в любом углу музыка будет звучать одинаково качественно.

Помимо всенаправленности, звук будет лишен доплеровской интермодуляции — это искажения, на слух проявляющиеся как гитарный эффект флэнжера. Они возникают из-за того, что динамик, излучая звук, то приближается к слушателю, то удаляется от него. Контрапертурные АС статичны, поэтому лишены интермодуляций. Многие слушатели отмечают невероятный комфорт от прослушивания такой акустической системы. Дело в том, что мозг воспринимает приближающиеся и удаляющиеся от него звуки как опасные и требующие внимания (а вдруг это хищник?). Соответственно, неподвижный источник звука не воспринимается как опасность и не возбуждает нервную систему.

Разумеется, у такой конструкции есть свои недостатки: сложная система требует высокоточного производства, тщательного подбора комплекта динамиков с абсолютно идентичными характеристиками, точного монтажа излучателей и т.п. Все это увеличивает себестоимость таких устройств до астрономических значений. Тем не менее, у них есть свои фанаты и место на рынке Hi-End аудиотехники.

Вибрационные колонки

Самые доступные необычные колонки для рядового потребителя — вибрационные. Для работы такого девайса нужна большая твердая поверхность. Например, стол или окно, хотя сойдет даже коробка молока. Устройство передает поверхности звуковые колебания, превращая ее в диффузор.

Такие девайсы сделаны больше для развлечения, а не для качественного звука. Некоторые умельцы покупают вибрационный динамик отдельно и делают из него сабвуфер. А устройство, прикрепленное к отопительной батарее, превращается в оружие возмездия шумному соседу. Мощность и звук зависят от размеров и материала поверхности, на которой расположен девайс. Лучше всего будут работать тонкие поверхности, частота собственных колебаний которых меньше.

Но технология таки нашла адекватное применение. Возможность превратить любую поверхность в излучатель звука стала востребована на различных выставках, в музеях, ресторанах и магазинах. Можно, например, прикрепить вибродинамик к витрине из оргстекла, сделав невидимые громкоговорители для аудиорекламы. Или, наоборот, превратить их в арт-объект, излучающий звук непонятно каким образом. Также можно сделать излучатели, защищенные от любой непогоды.

Панели из оргстекла, превращенные в невидимые громкоговорители в музее.

Любопытно, что похожим образом работают наушники с костной проводимостью. Они не втыкаются в уши, а прислоняются к кости, передавая звуковые вибрации прямо в череп.

Устройство динамика (громкоговорителя)

Устройство, обозначение и основные параметры электродинамического громкоговорителя

Для начала расставим все точки над “i” и разберёмся в терминологии.

Электродинамический громкоговоритель, динамический громкоговоритель, динамик, динамическая головка прямого излучения – это разнообразные названия одного и того же прибора служащего для преобразования электрических колебаний звуковой частоты в колебания воздуха, которые и воспринимаются нами как звук.

Звуковые динамики или по-другому динамические головки прямого излучения вы не раз видели. Они активно применяются в бытовой электронике. Именно громкоговоритель преобразует электрический сигнал на выходе усилителя звуковой частоты в слышимый звук.

Стоит отметить, что КПД (коэффициент полезного действия) звукового динамика очень низкий и составляет около 2 – 3%. Это, конечно, огромный минус, но до сих пор ничего лучше не придумали. Хотя стоит отметить, что кроме электродинамического громкоговорителя существуют и другие приборы для преобразования электрических колебаний звуковой частоты в акустические колебания. Это, например, громкоговорители электростатического, пьезоэлектрического, электромагнитного типа, но широкое распространение и применение в электронике получили громкоговорители электродинамического типа.

Как устроен динамик?

Чтобы понять, как работает электродинамический громкоговоритель, обратимся к рисунку.

Динамик состоит из магнитной системы – она расположена с тыльной стороны. В её состав входит кольцевой магнит. Он изготавливается из специальных магнитных сплавов или же магнитной керамики. Магнитная керамика – это особым образом спрессованные и «спечённые» порошки, в составе которых присутствуют ферромагнитные вещества – ферриты. Также в магнитную систему входят стальные фланцы и стальной цилиндр, который называют керном. Фланцы, керн и кольцевой магнит формируют магнитную цепь.

Между керном и стальным фланцем имеется зазор, в котором образуется магнитное поле. В зазор, который очень мал, помещается катушка. Катушка представляет собой жёсткий цилиндрический каркас, на который намотан тонкий медный провод. Эту катушку ещё называют звуковой катушкой. Каркас звуковой катушки соединяется с диффузором – он то и «толкает» воздух, создавая сжатия и разряжения окружающего воздуха – акустические волны.

Диффузор может выполняться из разных материалов, но чаще его делают из спрессованной или отлитой бумажной массы. Технологии не стоят на месте и в ходу можно встретить диффузоры из пластмассы, бумаги с металлизированным покрытием и других материалов.

Чтобы звуковая катушка не задевала за стенки керна и фланец постоянного магнита её устанавливают точно в середине магнитного зазора с помощью центрирующей шайбы. Центрирующая шайба гофрирована. Именно благодаря этому звуковая катушка может свободно двигаться в зазоре и при этом не касаться стенок керна.

Диффузор укреплён на металлическом корпусе – корзине. Края диффузора гофрированы, что позволяет ему свободно колебаться. Гофрированные края диффузора формируют так называемый верхний подвес, а нижний подвес – это центрирующая шайба.

Тонкие провода от звуковой катушки выводятся на внешнюю сторону диффузора и крепятся заклёпками. А с внутренней стороны диффузора к заклёпкам крепится многожильный медный провод. Далее эти многожильные проводники припаиваются к лепесткам, которые закреплены на изолированной от металлического корпуса пластинке. За счёт контактных лепестков, к которым припаяны многожильные выводы звуковой катушки, динамик подключается к схеме.

Как работает динамик?

Если пропустить через звуковую катушку динамика переменный электрический ток, то магнитное поле катушки будет взаимодействовать с постоянным магнитным полем магнитной системы динамика. Это заставит звуковую катушку либо втягиваться внутрь зазора при одном направлении тока в катушке, либо выталкиваться из него при другом. Механические колебания звуковой катушки передаются диффузору, который начинает колебаться в такт с частотой переменного тока, создавая при этом акустические волны.

Читайте также:  Теплая штукатурка - стоит ли утеплять

Обозначение динамика на схеме.

Условное графическое обозначение динамика имеет следующий вид.

Рядом с обозначением пишутся буквы B или BA, а далее порядковый номер динамика в принципиальной схеме (1, 2, 3 и т.д.). Условное изображение динамика на схеме очень точно передаёт реальную конструкцию электродинамического громкоговорителя.

Основные параметры звукового динамика.

Основные параметры звукового динамика, на которые следует обращать внимание:

Номинальное электрическое сопротивление (Ом). Медный провод звуковой катушки обладает активным сопротивлением. Активное сопротивление – это сопротивление провода при постоянном токе. Его можно легко измерить с помощью цифрового мультиметра в режиме омметра. Читайте измерение сопротивления цифровым мультиметром.

Но кроме активного сопротивления звуковая катушка обладает ещё и реактивным сопротивлением. Реактивное сопротивление образуется потому, что звуковая катушка, это, по сути, обычная катушка индуктивности и её индуктивность оказывает сопротивление переменному току. Реактивное сопротивление зависит от частоты переменного тока.

Активное и реактивное сопротивление звуковой катушки образует полное сопротивление звуковой катушки. Оно обозначается буквой Z (так называемый, импеданс). Получается, что активное сопротивление катушки не меняется, а реактивное сопротивление меняется в зависимости от частоты тока. Чтобы внести порядок реактивное сопротивление звуковой катушки динамика измеряют на фиксированной частоте 1000 Гц и прибавляют к этой величине активное сопротивление катушки.

В итоге получается параметр, который и называется номинальное (или полное) электрическое сопротивление звуковой катушки. Для большинства динамических головок эта величина составляет 2, 4, 6, 8 Ом. Также встречаются динамики с полным сопротивлением 16 Ом. На корпусе импортных динамиков, как правило, указывается эта величина, например, вот так – или 8 Ohm.

Стоит отметить тот факт, что полное сопротивление катушки где-то на 10 – 20% больше активного. Поэтому определить его можно достаточно просто. Нужно всего лишь измерить активное сопротивление звуковой катушки омметром и увеличить полученную величину на 10 – 20%. В большинстве случаев можно вообще учитывать только чисто активное сопротивление.

Номинальное электрическое сопротивление звуковой катушки является одним из важных параметров, так как его необходимо учитывать при согласовании усилителя и нагрузки (динамика).

Диапазон частот – это полоса звуковых частот, которые способен воспроизвести динамик. Измеряется в герцах (Гц). Напомним, что человеческое ухо воспринимает частоты в диапазоне 20 Гц – 20 кГц. И, это только очень хорошее ухо :).

Никакой динамик не способен точно воспроизвести весь слышимый частотный диапазон. Качество звуковоспроизведения будет всё-равно отличаться от того, что требуется.

Поэтому слышимый диапазон звуковых частот условно разделили на 3 части: низкочастотную (НЧ), среднечастотную (СЧ) и высокочастотную (ВЧ). Так, например, НЧ-динамики лучше всего воспроизводят низкие частоты – басы, а высокочастотные – «писк» и «звон» – их поэтому и называют пищалками. Также, есть и широкополосные динамики. Они воспроизводят практически весь звуковой диапазон, но качество воспроизведения у них среднее. Выигрываем в одном – перекрываем весь диапазон частот, проигрываем в другом – в качестве. Поэтому широкополосные динамики встраивают в радиоприёмники, телевизоры и прочие устройства, где порой не требуется получить высококачественный звук, а нужна лишь чёткая передача голоса и речи.

Для качественного воспроизведения звука НЧ, СЧ и ВЧ-динамики объединяются в едином корпусе, снабжаются частотными фильтрами. Это акустические системы. Так как каждый из динамиков воспроизводит только свою часть звукового диапазона, то суммарная работа всех динамиков значительно увеличивает качество звука.

Как правило, низкочастотные динамики рассчитаны на воспроизведение частот от 25 Гц до 5000 Гц. НЧ-динамики обычно имеют диффузор большого диаметра и массивную магнитную систему.

Динамики СЧ рассчитаны на воспроизведение полосы частот от 200 Гц до 7000 Гц. Габариты их чуть меньше НЧ-динамиков (зависит от мощности).

Высокочастотные динамики прекрасно воспроизводят частоты от 2000 Гц до 20000 Гц и выше, вплоть до 25 кГц. Диаметр диффузора у таких динамиков, как правило, небольшой, хотя магнитная система может быть достаточно габаритная.

Номинальная мощность (Вт) – это электрическая мощность тока звуковой частоты, которую можно подвести к динамику без угрозы его порчи или повреждения. Измеряется в ваттах (Вт) и милливаттах (мВт). Напомним, что 1 Вт = 1000 мВт. Подробнее о сокращённой записи числовых величин можно прочесть здесь.

Величина мощности, на которую рассчитан конкретный динамик, может быть указана на его корпусе. Например, вот так – 1W (1 Вт).

Это значит, что такой динамик можно легко использовать совместно с усилителем, выходная мощность которого не превышает 0,5 – 1 Вт. Конечно, лучше выбирать динамик с некоторым запасом по мощности. На фото также видно, что указано номинальное электрическое сопротивление – (4 Ом).

Если подать на динамик мощность большую той, на которую он рассчитан, то он будет работать с перегрузкой, начнёт «хрипеть», искажать звук и вскоре выйдет из строя.

Вспомним, что КПД динамика составляет около 2 – 3%. А это значит, что если к динамику подвести электрическую мощность в 10 Вт, то в звуковые волны он преобразует лишь 0,2 – 0,3 Вт. Довольно немного, правда? Но, человеческое ухо устроено весьма изощрённо, и способно услышать звук, если излучатель воспроизводит акустическую мощность около 1 – 3 мВт на расстоянии от него в несколько метров. При этом к излучателю – в данном случае динамику – нужно подвести электрическую мощность в 50 – 100 мВт. Поэтому, не всё так плохо и для комфортного озвучивания небольшой комнаты вполне достаточно подвести к динамику 1 – 3 Вт электрической мощности.

Это всего лишь три основных параметра динамика. Кроме них ещё есть такие, как уровень чувствительности, частота резонанса, амплитудно-частотная характеристика (АЧХ), добротность и др.

Порой на практике приходится соединять несколько динамиков или акустических систем. А что нужно знать при этом? Подробности в статье – Как соединять динамики?

Из чего состоит колонка

Порой интересно знать, как устроено то или иное устройство. В данной статье рассмотрим комплектацию колонки, а также разберём процесс их производства.

Как устроена колонка

Для начала необходимо знать всю полезную информацию про принцип, по которому осуществляется работа конструкции. Итак, то, что идёт непосредственно через катушку, принуждает её воспроизводить определённые колебания. Происходит это действие, конечно же, не выходя за магнитное поле. Таким образом, диффузор колеблется с присущей частотой, что провоцирует появление разряженных волн. Можно сказать, после названного этапа пользователь оборудования способен воспринимать звуки. При этом он проходит через специальный усилитель. Что касается диапазона, который доступен частотам, то его показатель напрямую зависит не только от габарита динамика, но и от толщины магнитного провода.

Из чего состоит колонка

Ниже представлены составляющие всего оборудования в последовательности по значимости:

  • Наиболее важным изделием является сам корпус. От его материала и внешнего вида зависит степень качества звучания. В целом именно она способна ликвидировать короткое замыкание, разделить динамики по отдельности, создать определённые условия для акустики и, конечно же, придать стиль самой колонке. Что касается её разновидностей, так это такие варианты, как прямоугольная, пирамидные и круглые формы. Исходный материал также может быть различным. В позволительную категорию входят: ДСП, ДВП, полимеры и пластик. Изнутри же устройство обволакивает чаще всего поролон, что позволяет улучшить звукоизоляцию.
  • Динамики выступают главной частью всего устройства. Это объясняется тем, что с их помощью производятся звуковые волны.

СПРАВКА. Сама мембрана может быть выполнена из искусственных соединений (целлюлоза). Если затрагивать дорогостоящие агрегаты, то речь может идти уже о тонкой титановой пластине. Модели изделия делятся по типу излучателей: на сабвуферы, среднечастотных и на твиттеры. Каждый из них отличается друг от друга не только особенностями, но и размерами.

  • Усилитель. Так как самих колонок можно условно разделить на пассивные и активные, то говоря о первом виде, стоит помнить о встроенном в него усилительном элементе. С его отсутствием звук бы исходил с довольно низкой громкостью. В другом же представителе он присоединяется отдельно благодаря клеммам и кабелям.

Схема колонки

Устройство включается непосредственно ниже названные части:

  • Краевой гофр. Такой элемент представляет с собой натуральную ткань. Составляющую различают по форме и материалу. Если она обладает гибкостью, качественным креплением и надёжностью, то все присущие ей требования выполнены. Кроме этого, чтобы добиться максимально точного звучания, изготавливают резиновые и бумажные изделия.
  • Диффузор. Его функция — поддерживать амплитудно-частотную характеристику. Сама деталь может быть твёрдой для обеспечения наименьшего искажения и мягкой, чтобы звук казался плавным и приятным на восприятие.
  • Колпачок — оболочка, сделанная из синтетики. Нужен для того, чтобы защищать внутренности от загрязнений. Кроме этого, он также играет особую роль в создании звучания.
  • С помощью шайбы фиксируется положение катушки. А также за счёт неё предотвращается попадание мелких частиц внутрь оборудования.
  • Магнитная система помогает преобразовать электрическую энергию.

Как делают колонки

Благодаря современным технологиям, на данный момент большой частью производства занимается завод. Таким образом, специальный станок изготавливает необходимые детали для корпуса, скрепляет углы и создаёт заготовки даже самых сложных форм. Далее работники самостоятельно совершают шлифовку поверхностей. После чего изделия отправляются на склад, пока на свет появляется электроника. Сотрудники с определённым опытом собирают и воспроизводят монтаж вручную. Далее устанавливаются динамики. В завершение осуществляется тестирование каждого изобретения. Делается это за счёт сравнивания с эталоном.

СПРАВКА. Причём в равных условиях. Если результат остаётся положительным, то приборы относят на склад готовой продукции, где они непосредственно упакуются.

Типы акустических систем.

Основные разновидности акустического оформления колонок.
Акустика открытого, закрытого и изобарического типов, а также вариантов
оформления: с лабиринтом, фазоинвертором, пассивным излучателем и т. д.

Акустические системы (колонки) – это последнее звено аудиосистемы, воспроизводящее звук путём преобразования электрического сигнала, поступающего с выхода УМЗЧ, в механические колебания излучателей, а следом и в звуковые колебания воздуха, воспринимаемые органами нашего слуха, а при высокой мощности – и остальными частями тела.
Как ни крути, а акустическая система – это ящик, собранный из механически прочного материала с вмонтированными в него динамиками. Ящик может быть выполнен в соответствии с одной из многочисленных конструкций, определяющих тип акустического оформления системы.

Рассмотрим основные разновидности этих конструкций:

1. Акустические системы открытого типа.

Качалось бы, что может быть проще, чем отбросить от ящика заднюю стенку, либо вообще – выкинуть к едреней фене все стенки, а динамики смонтировать на простом деревянном щите?
Именно из этой простой идеи, собственно говоря, и зародились первые акустические системы, называемые системами открытого типа.
Несмотря на кажущуюся архаичность решения, подобные колонки выпускаются как промышленно, так и делаются на коленках адептов качественного аудиофильского звука.
Объясняется такой интерес полным отсутствием какой-либо компрессии с тыловой стороны диффузоров динамиков. Результат – крайне открытое и воздушное звучание акустики и реальное удовольствие при прослушивании практически любых музыкальных жанров, исключая современные танцевальные, где на первый план выходит не натуральность звучания, а необходимость наличия мощных компрессионных басов.

Помимо отсутствия жирных басов существенным недостатком открытой акустики является и крайне высокая цена промышленных изделий, и необходимость наличия большого помещения для правильной ориентации колонок по отношению к слушателю, а также возможности размещения их на изрядном расстоянии от стен.

Частным случаем открытых систем является акустика, построенная на электростатических излучателях, в которых вместо традиционных динамиков применяется натянутая во всю высоту акустической системы тончайшая плёнка из токопроводящего материала. За счёт малого веса излучателя подобные системы обладают рядом достоинств, основными из которых являются: повышенная детальность и звукопередачи, а также филигранная способность отрабатывать даже самые резкие динамические перепады. Недостатком опять-таки является некоторая недостача низких частот.
Падение звукового давления при снижении частоты ниже значения резонансной частоты подвижной системы АС открытого типа составляет 12 дБ/окт.

Читайте также:  Теплый пол водяной своими руками в квартире от отопления

2. Акустические системы закрытого типа (закрытый ящик).

Рассчитать и “сколотить” полностью закрытый и герметичный ящик – дело также не сильно мудрёное и трудозатратное.
Как не странно, промышленный выпуск систем закрытого типа начался не только позже появления на свет акустики открытого типа, но также и позже распространения акустических систем с фазоинвертором на борту.
Произошло это событие сразу после начала выпуска усилителей достаточной мощности и динамиков с низкой упругостью подвеса.
Замкнутый объём воздуха внутри корпуса обладает некоторой упругостью, которая мешает свободному передвижению диффузора динамика и приводит к повышению резонансной частоты подвижной системы, что в свою очередь резко ухудшает воспроизведения частот ниже данного (резонансного) порога.

Лечится это либо увеличением внутреннего объёма изделия, либо повышением массы диффузора (для уменьшения частоты механического резонанса), что приводит к почти пропорциональному снижению чувствительности.
К неоспоримым достоинствам закрытой акустики можно отнести полное отсутствие каких-либо призвуков и фазовых огрехов, свойственных фазоинверторной акустике и акустическим лабиринтам. К недостаткам – либо довольно недетский размер колонок, либо отсутствие сверхглубоких басов при ограниченном объёме изделия.

Падение звукового давления данного типа АС при снижении частоты ниже значения резонансной частоты подвижной системы составляет 12 дБ/окт.

3. Панель акустического сопротивления.

Давно известная, но изрядно подзабытая панель акустического сопротивления (ПАС) несёт в себе достоинства как открытых, так и закрытых акустических систем, сочетая естественность звучания (без фазовых и переходных искажений) с простотой исполнения.
Панель представляет собой множество отверстий 5. 20 мм в диаметре на задней стенке корпуса громкоговорителя.
Суммарная площадь отверстий – около 60. 80% от эффективной площади диффузора НЧ динамика.

Поверх отверстий туго натягивается и приклеивается хлопчатобумажная (либо какая-либо ещё) ткань в один или два слоя.
Недостатком ПАС является спад звукового давления в области низких частот. Однако он не так велик, как у акустической системы закрытого типа и легко устраняется незначительным повышением мощностей усилителя и НЧ головки.
К сожалению, не существует чёткой теории по расчёту оптимальных параметров акустической системы с панелью ПАС, а в большинстве литературных источников говорится о необходимости экспериментального подбора всех параметров. Думаю, именно этот фактор обусловил в последнее время малое количество промышленных изделий с акустической панелью, оставив широкое поле для экспериментов пытливому радиолюбительскому сообществу.

Падение звукового давления АС при снижении частоты ниже значения резонансной частоты подвижной системы составляет 12 дБ/окт.

4. Акустические системы с фазоинвертором.

Фазоинвертор – это очередной способ обуздать избыток внутреннего давления внутри корпуса громкоговорителя и пустить его на благо увеличения отдачи на самых низких частотах.
По своей сути фазоинвертор – это труба, выведенная концом наружу и уходящая внутрь корпуса колонки.
Как и положено любой трубе, у неё есть собственная резонансная частота, зависящая от её геометрических размеров. Поэтому, когда динамик воспроизводит частоту на которую настроен фазоинвертор, объём воздуха в трубе резонирует, что приводит к весомому усилению воспроизведения этой частоты.
Естественным образом, для корректной работы подобной системы частоту резонанса трубы следует выбирать ниже резонансной частоты НЧ динамика в ящике.
Насколько ниже? В 1,5. 1,6 раза.

Труба фазоинвертора может выходить: на лицевую панель, на заднюю или боковую панели. Однако, в наиболее дорогих и качественных акустических системах она, как правило, расположена именно с тыльной стороны конструкции.

Несмотря на популярность данного типа изделий, фазоинверторная акустика всегда проигрывает как закрытому, так и открытому ящику с точки зрения динамических параметров (скорости отработки быстрых сигналов), а также фазовых характеристик, обуславливающих детальность и чистоту звукопередачи.
Собственно говоря, плюс у фазоинверторных акустических систем всего один – повышенная отдача на низких частотах и возможность воспроизведения самых глубоких басов при относительной простоте и дешевизне конструкции.

Падение звукового давления данного типа АС при снижении частоты ниже значения резонансной частоты настройки фазоинвертора составляет 24 дБ/окт.

5. Акустические системы бандпасс или полосовой громкоговоритель.

Бандпасс или полосовой сабвуфер – это акустически нагруженное оформление, представляющее собой фазоинверторный ящик, разделённый внутри дополнительной стенкой (перегородкой) на две разные по объёму камеры.
Динамик размещается на перегородке между камерами, т.е. закопан внутри корпуса, что с одной стороны хорошо, так как исключает риск его повреждения, с другой – не являясь системой прямого излучения, АС имеет сложную зависимость параметров от взаимного влияния всех конструктивных элементов, что обуславливает повышенные требования к расчёту и тщательности изготовления акустики.
Акустические системы бандпасс не являются системами прямого излучения. В зависимости от конструкции и количества фазоинверторов существует 3 вида бандпассов: 4-го порядка (см. рисунок слева), 6-го порядка тип-а (рисунок посередине), 6-го порядка тип-б (рисунок справа).
КПД и способность эффективно воспроизводить самые низкие частоты у бандпасса значительно выше, чем у классического фазоинвертора. Однако, такие досадные мелочи, как узкополосность и весьма посредственное качество воспроизведения ограничивают область применения данного типа акустического оформления главным образом сабвуферными устройствами, используемыми в автотранспортном хозяйстве.
А разрекламированная фишка о том, что байпас сам по себе является резонансным устройством высокого порядка и не нуждается в традиционных ФНЧ – носит весьма сомнительный характер и не заслуживает какого-либо серьёзного доверия.
С точки зрения КПД на низких частотах, бандпасс 4-го порядка является самым эффективным, однако при этом и самым узкополосным среди остальных видов подобных устройств.
Устройства 6-го порядка за счёт наличия двух фазоинверторов, настроенных на разные частоты, имеют более широкую полосу воспроизводимых частот, но, соответственно, и более низкий КПД.

6. Акустические системы с пассивным излучателем.

Системы с пассивным излучателем являются одной из разновидностей акустики фазоинверторного типа и призваны обеспечить глубокое воспроизведение низких частот без чрезмерного увеличения размеров изделия.
Смысл конструкции заключается в установке в закрытом ящике дополнительного низкочастотного динамика, у которого полностью отсутствует магнитная система. Т.е. он состоит только из диффузора, подвеса и рамы и, при этом – никуда не подключается.
Пассивный излучатель приводится в движение колебаниями воздуха внутри акустической системы, которые порождаются обратной стороной активных НЧ динамиков и, по сути, является аналогом резонансной системы, образованной трубой фазоинвертора.

Обычно пассивный излучатель выбирается из соображений величины собственной резонансной частоты – несколько меньшей, чем у активного динамика. Поэтому он должен иметь либо больший диаметр, либо большую массу своей подвижной системы.
Достоинствами пассивного излучателя являются глубокий бас вплоть до самых низких частот и отсутствие посторонних призвуков свойственных некоторым не слишком удачно выполненным фазоинверторным решениям.

7. Акустические системы с лабиринтом.

Воспроизводящие системы с акустическим лабиринтом можно встретить не так уж часто и только в изделиях довольно серьёзного ценового уровня. Причина проста и лежит на поверхности – сложность конструкции, а также её расчёта и настройки.
Хотя, на первый взгляд, всё кажется значительно проще, чем есть на самом деле. Звуковая волна, исходящая из тыльной части НЧ динамика, проходит через акустический лабиринт (волновод), протяжённостью в половину длины волны, на которой планируется добиться резонанса системы, и выходит из него уже в одной фазе с волной, излучаемой лицевой поверхностью динамика.
Конструкция настраивается исходя из нижней границы частотного диапазона АС.
Для минимизации массогабаритов и стоимости изделия часто протяжённость лабиринта рассчитывается, не исходя из половины длины волны, а исходя из четверти.

Это несколько ухудшает свойства акустики, но всё же оставляет их предпочтительными по сравнению с фазоинверторными изделиями.
От фазоинвертора лабиринт отличается менее «резонансным» звучанием, кроме того, в данном случае динамик свободен от компрессии, повышающей резонансную частоту, т.к. его тыловое излучение встречает минимальное количество препятствий.
Всё это звучит весьма красиво, однако при малейших просчётах в разработке или изготовлении – в длинном и сложном по форме волноводе с большой вероятностью могут возникнуть стоячие волны со сложной структурой резонансов, что сведёт на нет все преимущества акустического лабиринта.

8. Рупорные акустические системы.

Наиболее востребованными рупорные системы стали в среде аудиофилов, находящихся в непрерывных поисках «божественного» звука.
Рупорное акустическое оформление чаще используется в комбинации с другими типами (чаще для оформления высокочастотных излучателей), однако, существуют и широкополосные, полностью рупорные конструкции.
В качестве аналога рупорной акустической системы рассмотрим боцмана, нарушающего тишину посредством жестяного рупорного матюгальника. Что тут можно заметить? При участии матюгальника была достигнута значительная громкость, повысившая КПД орущего, а также сформирована чёткая направленность его излучения.
К тому же, благодаря свойству рупора повышать сопротивление воздушной среды – достигается лучшее согласование этой среды с относительно высоким механическим сопротивлением подвижной системы динамика.

Итак, из плюсов рупорных акустических систем: высокая чувствительность и, соответственно, КПД, приличное музыкальное разрешение, направленные свойства.
Из минусов: конструктивная и технологическая сложность, своеобразное звучание, считающееся некоторыми аудиофилами достоинством, значительные размеры низкочастотных рупоров, ограничивающие целесообразность их использования концертными площадками и стадионами.

9. Акустические системы изобарического типа.

Акустическая система изобарического типа – ещё одна разновидность низкочастотного оформления, призванная обеспечить достойное воспроизведение басов в корпусе ограниченного объёма.
Конструктивно ящик изобарической акустики разделён герметичной перегородкой на две (не всегда равные) части, в каждую из которых установлено по одному НЧ динамику так, что между ними находится постоянный неизменный объём воздуха.
На оба динамика одновременно подаётся один и тот же сигнал. Другими словами – их можно включить параллельно, либо последовательно, либо подключить каждый из них к отдельному усилителю.

При подобном включении излучателей нагрузка на тыльную сторону диффузора внешнего динамика будет компенсироваться аналогичными колебаниями внешней стороны диффузора динамика внутреннего. Результат – удвоение (вернее – почти удвоение) мощности акустического излучения при неизменном объёме корпуса АС.
А если задуматься о том, что каждая одиночная головка в пределах допускаемых отклонений имеет свою, обусловленную технологией производства, неравномерность АЧХ, и частоты пиков и провалов на каждой из них не совпадают, то очевидно, что, благодаря взаимному демпфированию излучателей, суммарная АЧХ окажется значительно более гладкой.

10. Акустические системы со сдвоенными головками.

На самом деле, вся эта изобарика, описанная выше – не более чем красивое рекламное название давным-давно известного типа акустических систем со сдвоенными головками.
Причём изначально сдвоенные головки располагались на одной панели, диффузорами навстречу друг к другу и, помимо всех преимуществ акустики изобарического типа, имели ещё одно существенное достоинство – меньшие по сравнению с одиночным излучателем нелинейные искажения.
Нелинейные искажения уменьшаются из-за того, что при данном (встречном) соединении динамиков сдвоенная головка представляет собой сугубо симметричную электромеханическую систему.
По этой причине – сопротивление воздушной среды с её обеих сторон практически одинаково, различия гибкости подвеса при движении диффузора вперёд и назад отсутствует. Наконец, асимметрия распределения магнитной индукции в зазоре магнитной системы, отрицательно влияющая на уровень второй гармоники, в сдвоенной головке при встречном расположении не проявляется.

Естественным образом, подключать головки к усилителю следует противофазно.

Исходя из сказанного, можно сделать вывод – данный тип акустики, с точки зрения качества звука, является более предпочтительным по отношению к системе изобарического типа.

11. Акустические системы смешанного типа.

Здесь всё просто как ситцевые трусы! Акустические системы смешанного типа – это АС, в которых для различных частотных поддиапазонов используются и разные типы акустического оформления.
Казалось бы, на этом можно поставить точку, однако есть ещё в природе изделия, которые вызывают изумление не только за счёт космических цен, но и в связи с неземным совершенством оных.
К числу таких относится обновлённая версия ВТОРЫХ (. ) сверху в иерархии акустических систем американской фирмы Nola – Concert Grand Reference Gold 2 (см. фото).
Приведу краткое описание колонок:
Традиционно для акустики фирмы ВЧ-СЧ секция выполнена в открытом оформлении.
Высокие частоты озвучивает ленточный излучатель длиной 12 дюймов, работающий от 1000 Гц, а на участке свыше 10000 Гц ему помогает небольшой ленточный супертвитер.

Ссылка на основную публикацию