Электролиз воды в домашних условиях

Электролиз обыкновенной воды

В данной статье поговорим про электролиз обыкновенной воды.

Тот, кто не задумываясь, тешит себя роликами с Ютюба, а после этого пытается повторить преподнесённое им на блюдечке, обречён на неудачу. Интернет «кишит» роликами-обманками, и это шоу является частью жизни людей. Кто-то на этом зарабатывает деньги, а кто-то помогает ему зарабатывать деньги, просматривая это шоу. К видеороликам необходимо подходить осторожно. Я, например, знаю, что можно повысить КПД электролизной установки, но я не уверен, действительно ли Мэйер ездил на своем автомобиле на воде? Первое, я себе доказал и теоретически и практически, а второе пока нет.

Для достаточного количества газа необходимого автомобилю, площадь электродов в ячейке Мэйера слишком мала! Один из загадочных элементов в конструкции автомобиля Мэйера – красный бак, находящийся за креслом водителя. Про него ничего нигде не пишут. В бак вставлены ячейка — «Resonant Cavity», индикатор уровня воды – «water level indicator», и лазерный стимулятор. Всё кроме этого бака, так или иначе, описано, а про бак вообще ничего. Неужели это и есть топливный бак (для воды). Но на видеороликах Мэйер наливает воду непосредственно в ячейку. Это было небольшое отступление от темы статьи, а для Вас — тема для раздумий.

Мои исследования, прежде всего, направлены не на скорейшее «подключение» электролизной ячейки к автомобилю, а на максимальное повышение её производительности. Цель – уменьшить электролизный ток, или другими словами – затраты энергии, но при этом увеличить объём выхода кислородно-водородной смеси. В ходе моих экспериментальных исследований выявились определённые физические свойства воды, изучив которые и в последующем используя, удалось увеличить производительность обыкновенной электролизной установки в несколько раз. Сначала я начинал эксперименты с установки, собранной из пластин, но в ходе экспериментов пришлось от них отказаться, перейдя на трубки. Пластины, представляли собой несогласованную нагрузку на сверхвысоких частотах. Тяжело было сделать синфазный СВЧ-разветвитель без потери мощности. Самая банальная, но главная проблема – все активные элементы должны были быть равноудалены от специального СВЧ-резонатора на расстояние кратное длине волны, иначе происходило неравномерное выделение газа. Поэтому я вынужден был перейти на трубки.

Для того, чтобы было с чем сравнивать в дальнейшем, последовательность экспериментов началась с обыкновенного электролиза постоянным током. Опыты я проводил на установке изображённой ниже. Электролизную ячейку я наполнял обыкновенной, пропущенной через угольный фильтр водопроводной водой, не используя при этом кислоты и щелочи. Во время эксперимента, из электролизной ячейки, водородно-кислородная смесь поступала в «перевёрнутую» наполненную водой ёмкость 1 объёмом 100 миллилитров. В начале опыта, при включении установки запускался секундомер. Когда ёмкость наполнялась газом и появлялись выходящие из неё во внешнюю ёмкость 2 пузырьки, секундомер останавливался. Для сокращения времени на опыты, были взяты три пары трубок описанных в патентах Мейера длиной 4 дюйма. Общая площадь электролизного активного пространства (площади электродов) составила около 180 см 2 .

Указанную ёмкость я «наполнял» газом несколько раз при различных токах электролиза. Мной были выбраны токи: 0,25А; 0,5А; 1А; 1,5А; 2А.

При обыкновенном электролизе постоянным током обнаружилось, что с повышением напряжения U на пластинах электролизной установки, происходит нелинейный рост тока I. По предварительному предположению, пузырьки газа должны препятствовать прохождению тока в межэлектродном пространстве, поэтому увеличение напряжения на пластинах должно приводить к увеличению сопротивления водно-газовой смеси по параболическому закону. На самом деле происходило обратное явление.

Сопротивление R , с повышением напряжения резко падало по нелинейному графику – «гиперболе». Ожидалось, что появляющиеся на поверхности электродов пузырьки газов должны препятствовать прохождению электрического тока между электродами. Но на практике, оказалось, что при повышении тока еще на малых его значениях, происходило резкое падение сопротивления, а при токах выше 7-ми ампер, свойства проводимости воды не изменяются – выполняется Закон Ома. Описанное явление поясняется графиками.

Опыты показали, что пузырьки газов не препятствуют току, а наоборот – проводят его. Произведя несложные вычисления расхода электрической мощности P, и сопоставив её с выходом газа V, получился интересный результат. Оказалось, что чем меньше мощность, а конкретнее – ток, тем производительнее установка. Другими словами, затраты электроэнергии на единицу объёма вырабатываемой кислородно-водородной смеси меньше при малых токах, а при повышении тока, растут его паразитные потери. Это показано на следующих графиках.

Безусловно, при большом токе вырабатывается больше газа, ведь мы стремимся к большему количеству газа, но соотношение выхода газа к затраченной мощности резко падает, что снижает КПД установки.

Проводя эксперименты, я заметил, что в начальный момент подачи фиксированного напряжения, ток электролизной установки увеличивается не сразу, а постепенно. Что это за явление? Какой бы ток не прикладывался, вода свой химический состав не изменит. Это же не философский камень: «Из гумна делать золото». Можно было предположить, что вода обладает индуктивными свойствами, но откуда этим свойствам взяться? Другой вариант является наиболее приемлемым – вода, под действием электрического тока изменяет свои электрохимические свойства. Но что изменяется? Неужели молекулы медленно выстраиваются в ряды? Можно долго рассуждать об ориентации и вытягивании молекул, как это объясняет Мэйер, о поверхностной ионизации электродов, как это делает Канарев, но мы не будем этого делать сейчас. В ходе экспериментов я обратил внимание, что пузырьки образуются не только на внутренних поверхностях электродов, но и снаружи (более медленно). Я решил сбить пузырьки ударами по пластиковому корпусу моей электролизной установки. И тут я заметил, что когда я стучал рукояткой отвёртки по корпусу электролизёра, то стрелка амперметра незначительно, но резко отклонялась в меньшую сторону, а через секунду возвращалась на прежнее деление шкалы. Это и стало очередным открытием. Я подключил вместо стрелочного амперметра параллельно соединенные осциллограф и 25-ти ваттный резистор сопротивлением 1 Ом. При ударах по корпусу электролизной установки, на экране осциллографа наблюдалось более резкое падение тока. Оказалось, что в результате тряски, поверхность электродов быстрее освобождалась от пузырьков газа, что приводило к уменьшению паразитного тока снижающего КПД установки. Этот факт и явился решающим в моих дальнейших экспериментах.

Необходимо было создать такое устройство, которое бы «трясло» электролизную установку. На роль трясущего можно рассмотреть кандидатуру пенсионера — нигде не работает, сидит и трясёт, но он занимает определённый объём пространства, его надо кормить, лечить его старые косточки! Выйдет дороже! Поэтому необходимы технические средства.

На некоторых сайтах встречаются статьи о том, что трубки Мэйера имеют специальные пропилы для настройки в резонанс на звуковых частотах. Пропилы вы видите на рисунке.

Конечно, такой вариант использования звуковых колебаний возможен, но крепление трубок сделано так, что не позволяет трубкам вибрировать. Зная о том, что вода хорошо передает звуковые колебания, проще установить в ёмкости один, например – ультразвуковой резонатор и эффект достигнут. Мной использовался обыкновенный генератор прямоугольных импульсов на ТТЛ-микросхеме и ультразвуковой «пятак». Эксперимент с ультразвуковым резонатором показал незначительное увеличение количества выхода газа, при неизменной затрачиваемой мощности. Характеристика этого процесса показана на графике.

Здесь первый график – отношение объёма выходящего газа V, к электрической мощности P, от самой мощности, затрачиваемой на получение кислородно-водородной смеси без ультразвукового воздействия, а второй график — с ультразвуковым воздействием. Положительный эффект имеется, но не выразительный. На малой мощности (малом токе), ультразвуковое воздействие вообще не влияет на процесс электролиза, а на большой мощности производительность установки в некоторой степени повышается. В идеале, можно предположить, чем сильнее вибрация, тем выше будет график производительности, но для удаления пузырьков газа из межэлектродного пространства всё равно необходимо время.

Один из вариантов, позволяющих удалять пузырьки газа из межэлектродного пространства – обеспечить быструю циркуляцию воды, вымывающую пузырьки кислорода и водорода. Этот способ использует в своих реакторах товарищ Канарёв. А Мэйер, помимо других способов, конструкцию трубок своей мобильной установки сделал так, чтобы обеспечить наилучшую естественную циркуляцию воды и газов.

Обратившись к патентам Мэйера, я обратил внимание на то, что в патентах он значительное место отводит лазерной стимуляции. Мерцание светодиодов происходит на частоте, приблизительно равной 30 кГц. В качестве стимуляторов, используются мощные красные светодиоды, подобные тем, которые стоят в лазерных указках. Колупать лазерные указки – не дешёвое удовольствие, поэтому я этого делать не стал. Можно конечно повозиться со сверхъяркими светодиодами, но я до этого не дошёл. Если у Вас есть желание и возможности, попробуйте.

До красного светового диапазона я не дошёл, остановившись на СВЧ-частотах. Как я писал ранее, используется резонансная частота молекул воды. Это позволяет коротким маломощным импульсом с СВЧ-заполнением «встряхнуть» практически любой объём воды. Но поскольку непрерывное колебание на сверхвысоких частотах способно только нагревать молекулы воды (подобно квазинепрерывному колебанию микроволновой СВЧ-печи), а нам этого не надо, я применил короткий импульс. Старая конструкция показала неравномерный выход газа из разных пар трубок, поэтому пришлось переделывать конструкцию ячейки с выполнением премудростей техники СВЧ. Благодаря использованию короткого сверхвысокочастотного импульса, произошло значительное увеличение количества выхода газа, при неизменной затрачиваемой мощности.

Здесь первый график – зависимость отношения объёма выходящего газа V, к мощности P, от самой электрической мощности, затрачиваемой на получение кислородно-водородной смеси без дополнительного воздействия. Второй график – с ультразвуковым воздействием, а третий — с воздействием СВЧ-импульсом. Положительный эффект от стимуляции СВЧ-импульсами выразительнее, чем стимуляция ультразвуком. В ходе экспериментов при СВЧ-стимуляции, наблюдалось незначительное падение производительности на подводимой мощности около 16-ти Ватт, а потом снова наблюдался подъём производительности. Что это за падение, объяснить пока не могу, думал – ошибка измерения, но при повторных экспериментах и проводимых с использованием других приборов «падение» повторялось. Для точности, повторные измерения проводились с шагом тока в 0,2А, в диапазоне от 0,2А, до 2,4А. На конечном участке графика происходило резкое падение производительности. Правильнее сказать – ток повышался, а количество газа не увеличивалось. Предполагаю, что на больших токах, большое количество выделяемого газа препятствовало работе установки, поэтому при более больших токах, я экспериментировать не стал, нет смысла.

Если Вы посмотрите на последний график, то сможете сделать вывод: эта экспериментальная установка с полезной площадью электродов равной 180 см 2 (три пары трубок), способна при затрате 27 Ватт электрической мощности вырабатывать около 2,2 литров кислородно-водородной смеси в час. При указанной мощности и напряжении 12 вольт, ток потребления приблизительно будет равен 2,25 ампера. Отсюда следует, что для выработки 22 литров кислородно-водородной смеси в час, требуется 270 Вт электрической энергии, что при бортовом напряжении в 12 вольт соответствует току 22,5 ампер. При этом необходимо 30 пар трубок высотой около 10 сантиметров. Как видите, ток не малый, но он вполне «вписывается» в затраты энергии штатным генератором автомобиля. Можно и по другому: на 1 киловатт затраченной электрической мощности вырабатывается 81 литр газа, или с пересчётом на метры кубические – необходимо приблизительно 12,3 киловат*час. для выработки одного кубического метра кислородно-водородной смеси.

Если сравнивать с известными электролизными установками, например ИФТИ, затрачивающими 4…5 киловат*час на кубический нормированный метр водорода, то описанная в этой статье установка проигрывает в производительности, поскольку она затрачивает на кубический нормированный метр водорода 18,5 киловат*час. Поэтому из приведённых мной цифр делайте выводы сами.

Обратите внимание, что в описываемой мной установке используется обыкновенная вода, не «сдобренная» каустической содой, или другой щелочью. Щелочь необходима в обыкновенных электролизных установках, без неё установки не производительны. Кроме того, подача напряжения на электроды производится в непрерывном режиме. Но по патентам Мэйера следует, что он использовал импульсный режим. Мэйер пишет, что во время пауз, происходит восстановление воды. Думаю, что паузы в подаче напряжения используются для очистки электродов от пузырьков газа, которые вызывают появление в межэлектродном пространстве дополнительных паразитных токов.

Какой объем газа необходим для работы двигателя внутреннего сгорания, я пока не разбирался. Но то, что показывают на Ютюбе, мало соответствует действительности.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Что такое электролизер и как его сделать своими руками?

Электролиз широко используется в производственной сфере, например, для получения алюминия (аппараты с обожженными анодами РА-300, РА-400, РА-550 и т.д.) или хлора (промышленные установки Asahi Kasei). В быту этот электрохимический процесс применялся значительно реже, в качестве примера можно привести электролизер для бассейна Intellichlor или плазменный сварочный аппарат Star 7000. Увеличение стоимости топлива, тарифов на газ и отопление в корне поменяли ситуацию, сделав популярной идею электролиза воды в домашних условиях. Рассмотрим, что представляют собой устройства для расщепления воды (электролизеры), и какова их конструкция, а также, как сделать простой аппарат своими руками.

Что такое электролизер, его характеристики и применение

Так называют устройство для одноименного электрохимического процесса, которому требуется внешний источник питания. Конструктивно это аппарат представляет собой заполненную электролитом ванну, в которую помещены два или более электродов.

Основная характеристика подобных устройств – производительность, часто это параметр указывается в наименовании модели, например, в стационарных электролизных установках СЭУ-10, СЭУ-20, СЭУ-40, МБЭ-125 (мембранные блочные электролизеры) и т.д. В данных случаях цифры указывают на выработку водорода (м 3 /ч).

Промышленная стационарная электролизная установка, вырабатывающая 40 м3 водорода в час (СЭУ-40)

Что касается остальных характеристик, то они зависят от конкретного типа устройства и сферы применения, например, когда осуществляется электролиз воды, на КПД установки влияют следующие параметры:

  1. Уровень напряжения (минимального электродного потенциала), оно должно быть от 1,8 до 2 вольт, меньшее значение «не запустит» процесс, а большее приводит к чрезмерному расходу энергии, идущей на нагрев электролита. Если в качестве источника используется блок питания, например, на 14 вольт имеет смысл разделить емкость ванны пластинами на 7 ячеек, в соответствии с рисунком 2. Рис 2. Расположение пластин в ванне электролизера

Таким образом, подавая на выходы 14 вольт, мы получим 2 вольта на каждой ячейке, при этом на пластинах с каждой стороны будут разные потенциалы. Электролизеры, где используется подобная система подключения пластин, называются сухими.

  1. Расстояние между пластинами (между катодным и анодным пространством), чем оно меньше, тем меньше будет сопротивление и, следовательно, больший ток пройдет через раствор электролита, что приведет к увеличению выработки газа.
  2. Размеры пластины (имеется в виду площадь электродов), прямо пропорциональны току, идущему через электролит, а значит, также оказывают влияние на производительность.
  3. Концентрация электролита и его тепловой баланс.
  4. Характеристики материала, используемого для изготовления электродов (золото – идеальный материал, но слишком дорогой, поэтому в самодельных схемах используется нержавейка).
  5. Применение катализаторов процесса и т.д.

Как уже упоминалось выше, установки данного типа могут использоваться как генератор водорода, для получения хлора, алюминия или других веществ. Они также применяются в качестве устройств, при помощи которых осуществляется очистка и обеззараживание воды (УПЭВ, VGE), а также проводится сравнительный анализ ее качества (Tesp 001).

А) Установка прямого электролиза воды (УПЭВ); Б) анализатор качества воды Tesp 001

Нас, прежде всего, интересуют устройства, производящие газ Брауна (водород с кислородом), поскольку именно эта смесь имеет все перспективы для использования в качестве альтернативного энергоносителя или добавок к топливу. Их мы рассмотрим чуть позже, а пока перейдем к конструкции и принципу работы простейшего электролизера, расщепляющего воду на водород и кислород.

Устройство и подробный принцип работы

Аппараты для производства гремучего газа, в целях безопасности, не предполагают его накопление, то есть газовая смесь сжигается сразу после получения. Это несколько упрощает конструкцию. В предыдущем разделе мы рассмотрели основные критерии, влияющие на производительность аппарата и накладывающие определенные требования к исполнению.

Принцип работы устройства демонстрирует рисунок 4, источник постоянного напряжения подключен к погруженным в раствор электролита электродам. В результате через него начинает проходить ток, напряжение которого выше точки разложения молекул воды.

Рисунок 4. Конструкция простого электролизера

В результате этого электрохимического процесса катод выделяет водород, а анод – кислород, в соотношении 2 к 1.

Виды электролизеров

Кратко ознакомимся с конструктивными особенностями основных видов устройств для расщепления воды.

Сухие

Конструкция прибора данного типа была показана на рисунке 2, ее особенность заключается в том, что манипулируя количеством ячеек, можно запитать устройство от источника с напряжением, существенно превышающим минимальный электродный потенциал.

Проточные

С упрощенным устройством приборов этого вида можно ознакомиться на рисунке 5. Как видим, конструкция включает в себя ванну с электродами «A», полностью залитую раствором и бак «D».

Рис 5. Конструкция проточного электролизера

Принцип работы устройства следующий:

  • входе электрохимического процесса газ вместе с электролитом выдавливается в емкость «D» через трубу «В»;
  • в баке «D» происходит отделение от электролитного раствора газа, который выводится через выходной клапан «С»;
  • электролит возвращается в гидролизную ванну через трубу «Е».

Мембранные

Основная особенность устройств этого типа – использование твердого электролита (мембраны) на полимерной основе. С конструкцией приборов этого вида можно ознакомиться на рисунке 6.

Читайте также:  Краны полипропиленовые для отопления

Рис 6. Электролизер мембранного типа

Основная особенность таких устройств заключается в двойном назначении мембраны, она не только переносит протоны и ионы, а и на физическом уровне разделяет как электроды, так и продукты электрохимического процесса.

Диафрагменные

В тех случаях, когда не допустима диффузия продуктов электролиза между электродными камерами, используют пористую диафрагму (что и дало название таким приборам). Материалом для нее может служить керамика, асбест или стекло. В некоторых случаях для создания такой диафрагмы можно использовать полимерные волокна или стеклянную вату. На рисунке 7 показан простейший вариант диафрагменного прибора для электрохимических процессов.

Конструкция диафрагменного электролизера

  1. Выход для кислорода.
  2. U-образная колба.
  3. Выход для водорода.
  4. Анод.
  5. Катод.
  6. Диафрагма.

Щелочные

Электрохимический процесс невозможен в дистиллированной воде, в качестве катализатора применяется концентрированный раствор щелочи (использование соли нежелательно, так как при этом выделяется хлор). Исходя из этого, щелочными можно назвать большую часть электрохимических устройств для расщепления воды.

На тематических форумах советуют использовать гидроксид натрия (NaOH), который, в отличие от пищевой соды (NaHCO3), не разъедает электрод. Заметим, что у последней имеются два весомых преимущества:

  1. Можно использовать железные электроды.
  2. Не выделяются вредные вещества.

Но, один существенный недостаток сводит на нет все преимущества пищевой соды, как катализатора. Ее концентрация в воде не более 80 грамм на литр. Это снижает морозостойкость электролита и его проводимость тока. Если с первым еще можно смириться в теплое время года, то второе требует увеличения площади пластин электродов, что в свою очередь, увеличивает размер конструкции.

Электролизер для получения водорода: чертежи, схема

Рассмотрим, как можно сделать мощную газовую горелку, работающую от смеси водорода с кислородом. Схему такого устройства можно посмотреть на рисунке 8.

Рис. 8. Устройство водородной горелки

  1. Сопло горелки.
  2. Резиновые трубки.
  3. Второй водяной затвор.
  4. Первый водяной затвор.
  5. Анод.
  6. Катод.
  7. Электроды.
  8. Ванна электролизера.

На рисунке 9 представлена принципиальная схема блока питания для электролизера нашей горелки.

Рис. 9. Блок питания электролизной горелки

На мощный выпрямитель нам понадобятся следующие детали:

  • Транзисторы: VT1 – МП26Б; VT2 – П308.
  • Тиристоры: VS1 – КУ202Н.
  • Диоды: VD1-VD4 – Д232; VD5 – Д226Б; VD6, VD7 – Д814Б.
  • Конденсаторы: 0,5 мкФ.
  • Переменные резисторы: R3 -22 кОм.
  • Резисторы: R1 – 30 кОм; R2 – 15 кОм; R4 – 800 Ом; R5 – 2,7 кОм; R6 – 3 кОм; R7 – 10 кОм.
  • PA1 – амперметр со шкалой измерения не менее 20 А.

Краткая инструкция по деталям к электролизеру.

Ванну можно сделать из старого аккумулятора. Пластины следует нарезать 150х150 мм из кровельного железа (толщина листа 0,5 мм). Для работы с вышеописанным блоком питания потребуется собрать электролизер на 81 ячейку. Чертеж, по которому выполняется монтаж, приведен на рисунке 10.

Рис. 10. Чертеж электролизера для водородной горелки

Заметим, что обслуживание такого устройства и управление им не вызывает трудностей.

Электролизер для автомобиля своими руками

В интернете можно найти много схем HHO систем, которые, если верить авторам, позволяют экономить от 30% до 50% топлива. Такие заявления слишком оптимистичны и, как правило, не подтверждаются никакими доказательствами. Упрощенная схема такой системы продемонстрирована на 11 рисунке.

Упрощенная схема электролизера для автомобиля

По идее, такое устройство должно снизить расход топлива за счет его полного выгорания. Для этого в воздушный фильтр топливной системы подается смесь Брауна. Это водород с кислородом, полученные из электролизера, запитанного от внутренней сети автомобиля, что повышает расход топлива. Замкнутый круг.

Безусловно, может быть задействована схема шим регулятора силы тока, использован более эффективный импульсный блок питания или другие хитрости, позволяющие снизить расход энергии. Иногда в интернете попадаются предложения приобрести низкоамперный БП для электролизера, что вообще является нонсенсом, поскольку производительность процесса напрямую зависит от силы тока.

Это как система Кузнецова, активатор воды которой утерян, а патент отсутствует и т.д. В приведенных видео, где рассказывают о неоспоримых преимуществах таких систем, практически нет аргументированных доводов. Это не значит, что идея не имеет прав на существование, но заявленная экономия «слегка» преувеличена.

Электролизер своими руками для отопления дома

Делать самодельный электролизер для отопления дома на данный момент не имеет смысла, поскольку стоимость водорода, полученного путем электролиза значительно дороже природного газа или других теплоносителей.

Также следует учитывать, что температуру горения водорода не выдержит никакой металл. Правда имеется решение, которое запатентовал Стен Мартин, позволяющее обойти эту проблему. Необходимо обратить внимание на ключевой момент, позволяющий отличить достойную идею от очевидного бреда. Разница между ними заключается в том, что на первый выдают патент, а второй находит своих сторонников в интернете.

На этом можно было бы и закончить статью о бытовых и промышленных электролизерах, но имеет смысл сделать небольшой обзор компаний, производящих эти устройства.

Обзор производителей электролизеров

Перечислим производителей, выпускающих топливные элементы на базе электролизеров, некоторые компании также выпускают и бытовые устройства: NEL Hydrogen (Норвегия, на рынке с 1927 года), Hydrogenics (Бельгия), Teledyne Inc (США), Уралхиммаш (Россия), РусАл (Россия, существенно усовершенствовали технологию Содерберга), РутТех (Россия).

Аппарат живой и мертвой воды – как сделать своими руками

Приветствую, дорогой читатель! Спасибо, что проявили интерес к моему дневнику…

Аппарат приготовления живой и мертвой воды используется в быту с целью активации пресной воды с помощью электричества. Под действием электролиза она разлагается на положительные ионы водорода H + и отрицательные ионы гидроксильной группы OH – .

Вблизи положительного электрода жидкость становится кислой, а отрицательного – резко щелочной. Обе ее фракции используются в лечебных целях.

Срок хранения активированной воды ограничен, поэтому ее приготовление осуществляется непосредственно перед употреблением. В последнее время получили распространение ионизаторы жидкости промышленного изготовления.

Так, например, прибор «Мелеста» стоимостью около 1,5 тысячи рублей изготовляется в Уфе с анодным покрытием из окислов рутения. Другой активатор жидкости белорусского производства АП-1 более совершенный, но его цена в 2 раза выше.

Несмотря на достаточно высокие цены, такие устройства в техническом аспекте особой сложности не представляют. Поэтому сделать своими руками аппарат живой и мертвой воды можно даже «на коленке». К тому же, самостоятельное изготовление устройства обходится значительно дешевле, а по эффективности оно не уступает промышленным образцам.

Одним из первых бытовой электролизер изготовил самостоятельно ставропольский умелец Д.Кротов. Он же провел испытания воздействия ионизированной жидкости на себе. Получив положительный результат, им были предложены первые рецепты использования живой и мертвой воды в лечебных целях.

Конструкция и схема прибора

В процессе электролиза на отрицательном катоде скапливается водород, а на аноде – кислород, то есть вода разделяется на две компоненты. Основная проблема заключается в отделении кислой фракции, иначе католита от щелочной (анолита). С этой целью используется диафрагма.

Свойства у нее должны быть двоякие. С одной стороны, она позволяет проникать раствору, а с другой стороны, должна препятствовать проникновению продуктов электролиза. Материалом для ее изготовления обычно служит брезент в виде ткани от противогазной сумки или пожарный рукав.

В электролизере не менее важное значение отводится электродам. Как правило, они изготавливаются из нержавеющей стали, используемой в пищевых целях. Однако под действием электрического тока сталь, как и большинство сплавов из металла, частично растворяется.

Присутствующие в ней примеси достаются жидкости. Лучшими считаются угольно-кремниевые электродные пластины или графитовые стержни.

Неотъемлемым атрибутом конструкции является емкость, куда заливается жидкость и помещаются электроды. Чаще всего в аппарате, сделанном своими руками, используется стеклянная банка. Ниже представлена схема одного из вариантов прибора живой и мертвой воды.

Устройство работает от электросети переменного тока. В качестве выпрямителя используется один мощный диод или выпрямительный мостик. Во втором случае производительность прибора повышается.

При выборе диодов следует учитывать, чтобы значение прямого тока было 10 А, а обратное напряжении не ниже 300 В. Таким параметрам соответствуют диоды, например, типа Д245-Д247. В аппарате их можно использовать без радиаторов.

Размеры электродов зависят от используемой емкости. Они не должны касаться ее дна. Используемая емкость обычно закрывается полиэтиленовой крышкой с отверстием для выхода газов.

Прочность такой крышки недостаточна для удержания электродов. Поэтому сверху она усиливается дополнительной изолирующей прокладкой из прочного изолирующего материала, например, текстолита.

Ниже приведены размеры электродов и изолирующей прокладки, когда емкостью для жидкости является одно-литровая стеклянная банка.

Материалом для электродов служит нержавеющая сталь толщиной 0,8-3 мм и шириной 30-40 мм. Длина электродов составляет 150-160 мм с расчетом, чтобы от их концов до дна емкости оставался промежуток не менее 10 мм.

Закрепляются электроды винтами с гайками диаметром 4 мм, расстояние между ними принимается 40-45 мм. Пластина анода прикрепляется к плюсовому концу выпрямителя и на ней закрепляется мешочек из брезентовой ткани на 5-7 мм ниже верхнего края емкости.

Размеры брезентового мешочка могут быть любыми. Так, для литровой стеклянной банки, подойдет мешочек диаметром 7 см и длиной около 20 см. В готовом виде составные части прибора создания живой и мертвой воды показаны ниже.

При обращении с аппаратом следует помнить, что напряжение электрической сети опасно для жизни. Когда же дополнительно приходится обращаться с водной средой, то опасность возрастает.

Поэтому аппарат, сделанный своими руками, уместно подключать через розетку или вилку, оборудованную устройством защитного отключения (УЗО).

В крайнем случае, можно использовать УЗО с креплением под дин-рейку. В условиях повышенной влажности рекомендуется УЗО с током утечки 10 мА.

Диафрагма для отделения живой воды от мертвой после окончания процесса электролиза требует немедленного изъятия, чтобы компоненты снова не перемешались. Поэтому предлагается рассмотреть другой вариант прибора для изготовления своими руками, но с раздельными емкостями для жидкости.

Аппарат с раздельными емкостями

Электрическая схема устройства не отличается от рассмотренной ранее, но для католита предусмотрено использование стеклянной банки из-под сыпучих материалов диаметром 90 мм и высотой 160 мм.

Емкость для аналита входит внутрь банки и для нее надо постараться отыскать глиняный цилиндр с размерами 60х60х130 мм, который доступен в хозяйственных магазинах. Обожженная глина выполняет роль диафрагмы. Контроль потребляемого тока целесообразно осуществлять с помощью дополнительного амперметра со шкалой до 1 А.

В качестве электродов удобно использовать медицинские шпатели в количестве 3-4 штук. Их можно приобрести в торговых точках «Медтехника». Катод для повышения эффективности изготавливается из двух шпателей, которые размещаются в пластиковой крышке. Крепление шпателей осуществляется посредством отверстий, проделанных в узких их частях, и П-образных оцинкованных жестяных перемычек с отверстиями.

Анодный шпатель следует обрезать в узкой части до длины 125 мм и закрепить так же, как и катодные детали. Для эффективности анод может содержать тоже два шпателя, отстоящими друг от друга более 20 мм. Они размещаются в пластиковой крышке меньшего диаметра, для которой в крышке катода вырезается отверстие.

В простейшем случае, крышку с положительным электродом можно разместить на глиняном цилиндре. Важно обязательно проверить, чтобы положительный и отрицательный электроды не соприкасались в состоянии, когда собрано устройство.

В не меньшей степени интересен вариант прибора для живой и мертвой воды с двумя отдельно стоящими емкостями.

Из рисунка видно, что две раздельные емкости соединены токопроводящей перемычкой. Она обычно изготовляется в виде жгута из медицинской ваты, обернутой бинтом и ее длина в пределах 10-15 см. Перед началом процесса электролиза перемычка обильно смачивается жидкостью.

Последовательное подключение к устройству лампочки на 15-25 Вт позволяет контролировать процесс электролиза. В конце процесса она начинает еле светиться, а при возможном коротком замыкании она перегорает, то есть срабатывает как плавкий предохранитель.

Приготовление ионизированной воды

Положительный результат электролиза зависит в первую очередь от качества жидкости. Она должна иметь минимальное количество примесей. С этой целью обыкновенная водопроводная вода отстаивается не менее двух-трех часов и пропускается через фильтр.

В начале процесса величина потребляемого тока 1 А и более указывает на повышенное содержание в растворе солей металлов. Оптимальным считается значение потребляемого тока 0,2 А, который на заключительной стадии не превышает 1 А. Определяющим показателем электролиза является также температура. Она не должна превышать 35 градусов.

Порядок приготовления активированной воды существенно не зависит от варианта исполнения прибора, но имеет некоторые особенности.

Последовательность действий в первом варианте:

  1. Установить мешочек из брезента в пустую емкость.
  2. Налить жидкость на 1 см ниже верхнего края.
  3. Поместить электроды в банку, анод – в мешочек.
  4. Подключить прибор к электросети.
  5. Через 5-12 мин выключить напряжение сети и удалить электроды.
  6. Сразу же извлечь брезентовый мешочек с кислотной жидкостью и перелить ее в отдельную емкость.

Последовательность действий во втором варианте:

  1. Залить жидкость в банку и в глиняный стакан.
  2. Разместить стакан в стеклянной банке.
  3. В обеих емкостях уровни воды должны быть одинаковы, но, чтобы жидкость не переливалась в стакан из банки.
  4. Установить пластину с положительным электродом в глиняный стакан.
  5. Установить в стеклянную банку отрицательный электрод, чтобы его пластины были параллельны анодным пластинам.
  6. Проверить отсутствие контакта катода с анодом.
  7. Подключить аппарат к сети на 5-12 мин.
  8. Выключить устройство и изъять ионизированную воду.

Некоторые особенности электролиза

После окончания процесса электролиза следует немедленно вытащить электроды и тщательно протереть их полотенцем. С приготовлением третьего десятка доз ионизированной жидкости отрицательный электрод покрывается налетом соли и становится «седым». Как следствие, падает значение потребляемого тока, а процесс увеличивается по времени.

Тогда для удаления солей с катода, его помещают на полчаса в рабочую емкость с добавлением в жидкость 70% уксусной кислоты. Для полного удаления солей с анода потребуется около суток. После промывки электроды будут блестеть.

«Живая» вода мягковатая и обычно прозрачная с привкусом мела. Вначале в ней будут заметны мельчайшие остатки соли в виде белых хлопьев, поэтому перед употреблением дать жидкости отстояться.

Срок хранения живой воды при комнатной температуре не более суток в стеклянной емкости, не пропускающей солнечные лучи. Однако наибольшая польза от нее в первые два-три часа. Щелочная жидкость заживляет раны, порезы и ссадины.

«Мёртвая» вода после приготовления имеет кислый вкус и запах хлора с грязно-желтоватым или коричневым оттенком. Она сохраняет свои свойства на протяжении двух недель. Солнечный свет для нее тоже противопоказан. Кислотная вода хороша при полоскании носа и горла для избавления от простудных заболеваний.

Кстати, иногда после кипячения воды посредством электрических чайников, в ней также возможно присутствие запаха хлора, что косвенно указывает на ее электролиз. Отсюда нетрудно предположить, что такая субстанция содержит не ярко выраженные свойства мертвой воды.

Качество активированной жидкости в домашних условиях, как правило, определяется лакмусовой бумажкой. Живая вода имеет показатель кислотности 8-10, а мертвая – не выше 5.

В случае употребления ионизированной жидкости внутрь следует придерживаться указаний в рецепте, но не позже, чем за полчаса до еды или после еды через 2-2,5 часа. Кроме того, в период лечения уместно отдать предпочтение здоровому питания, отказавшись от жирной и острой пищи, а также от алкоголя

Заключение

Таким образом, прибор живой и мертвой воды позволяет получать ионизированную жидкость непосредственно перед употреблением, что существенно влияет на ее лечебные свойства.

Аппарат можно сделать своими руками, который качественно не уступает промышленным образцам. Его изготовление не займет много времени и не потребует дорогостоящих деталей.

Домашний электролиз своими руками

Когда я был маленький, я всё время хотел что-либо делать сам, своими рукам. Вот только родители (и другие родственники) обычно этого не разрешали. А я не видел тогда (и до сих пор не вижу) ничего плохого, когда маленькие дети хотят учиться ?

Конечно, я написал эту статейку не для того, чтобы вспомнить детские переживания в попытках начать самообразование. Просто совершенно случайно, когда я бродил на otvet.mail.ru я наткнулся на вопрос подобного рода. Какой-то маленький мальчик-подрывник спрашивал, как в домашних условиях произвести электролиз. Ему я, правда, не стал отвечать, т. к. уж больно подозрительные смеси хотел электролизировать этот мальчик ? Решил, что от греха подальше не скажу, пусть сам в книгах ищет. Но вот недавно, опять же бродя по форумам, увидел подобный вопрос от школьного учителя химии. Судя по описанию его школа настолько бедная, что не может (не хочет) приобрести электролизёр рублей за 300. Учитель (вот беда!) не смог найти выход из сложившейся ситуации. Вот ему я помог. Для тех, кому любопытны такого рода самоделки я выкладываю эту статью на сайт.

Собственно, процесс изготовления и применения нашего самопала крайне примитивный. Но о технике безопасности я расскажу в первую очередь, а про изготовление — уже во вторую. Дело в том, что речь пойдёт о показательном электролизёре, а не о промышленной установке. Поэтому для безопасности лучше будет запитать его не от сети, а от пальчиковых батареек или от аккумулятора. Естественно, чем больше будет напряжение, тем шустрей пойдёт сам процесс электролиза. Но для визуального наблюдения пузырьков газа вполне хватит 6 В, а вот 220 — это уже слишком. С таким напряжением вода, например, скорее всего будет бурлить, а это не совсем безопасно… Ну, с напряжением думаю разобрались?

Читайте также:  Гидроразделитель в системе отопления

Теперь поговорим о том, где и на каких условиях мы будем проводить эксперимент.
Во-первых, это должно быть либо открытое пространство, либо хорошо проветриваемое помещение. Хотя я всё делал в квартире с закрытыми окнами и вроде ничего ?
Во-вторых, эксперимент лучше проводить на хорошем столе. Под словом «хороший» подразумевается то, что стол должен быть устойчивым, а лучше массивным, жёстким и прикреплённым к полу. При этом покрытие стола должно быть устойчивым к агрессивным веществам. Кстати, для этого хорошо подходит кафельная плитка (хотя и не любая, к сожалению). Такой стол пригодится вам не только для этого опыта. Впрочем, я всё сделал на обычной табуретке ?
В-третьих, в ходе эксперимента вам не потребуется перемещать источник питания (в моём случае — батарейки). Поэтому для надёжности их лучше сразу положить на стол и закрепить, чтобы они не сдвигались с места. Поверьте, это удобней, чем придерживать их постоянно руками. Свои батарейки я просто примотал изолентой к первому попавшемуся жёсткому предмету.
В-четвёртых, посуда, в которой будем проводить эксперимент пусть будет небольшой. Обычный стакан подойдёт или рюмка. Кстати, это самый лучший способ использования рюмок дома, в отличие от разлития в них спиртного с последующим употреблением…

Ну а сейчас перейдём непосредственно к прибору. Он представлен на рисунке, а я пока объясню коротко что и с чем.

Нам нужно взять простой карандаш и удалить с него дерево при помощи обычного ножа и достать из карандаша целый грифель. Можно, правда, взять грифель от механического карандаша. Но тут есть сразу две сложности. Первая — банальная. Грифель от механического карандаша очень тонкий, нам такой просто не подойдёт для наглядного эксперимента. Вторая сложность — это какой-то странный состав нынешних грифелей. Такое ощущение, что их делают не из графита, а из чего-то иного. В общем, с таким «грифелем» у меня опыт не получился вообще даже при напряжении 24 В. Поэтому мне пришлось расковырять старый добрый деревянный простой карандаш. Полученный графитовый стержень будет служить нам электродом. Как вы понимаете, электродов нам нужно два. Поэтому идём ковырять второй карандаш, либо просто сломаем имеющийся стержень пополам. Я сделал именно так.

Любым попавшимся под руку проводом обматываем первый грифель-электрод (одним концом провода), и этот же провод подключаем к минусу источника питания (другим концом). После этого берём второй грифель и проделываем с ним тоже самое. Для этого нам, соответственно, нужен второй провод. Но на этот раз подсоединяем этот провод к плюсу источника питания. Если у вас возникнут проблемы в процессе прикрепления хрупкого графитового стержня к проводу, можете воспользоваться подручными средствами: изолентой или скотчем. Если не получилось обмотать кончик графита самим проводом, а скотч или изолента не обеспечили плотного контакта, то попробуйте приклеить грифель токопроводящим клеем. Если такого у вас нет, то хотя бы привяжите грифель к проводу при помощи нитки. Не бойтесь, нитка не сгорит от такого напряжения ?

Для тех кто ничего не знает о батарейках и элементарных правил их соединения я немного поясню. Пальчиковая батарейка выдаёт напряжение 1,5 В. На рисунке у меня две таких батарейки. Причём соединены они последовательно — одна за другой, а не параллельно. При таком (последовательном) соединении итоговое напряжение будет суммироваться из напряжения каждой батарейки, т. е. у меня это 1,5 + 1,5 = 3,0 В. Это меньше заявленных ранее шести вольт. Но мне было лень сходить купить ещё несколько батареек. Принцип вам и так понятен должен быть ?

Приступим к эксперименту. Для примера ограничимся электролизом воды. Во-первых, она очень доступна (я надеюсь, что читающий эту статью не живёт в Сахаре), а во-вторых — безопасна. Кроме того, я покажу, как одним и тем же прибором (электролизёром) с одним и тем же веществом (водой) сделать два разных опыта. Думаю, что у вас фантазии хватит, чтобы напридумывать ещё кучу подобных опытов с другими веществами ? В общем, для нас подойдёт вода из крана. Но я советую вам ещё немного её и посолить. Немного — это значит очень маленькую щепотку, а не целую десертную ложку. Это очень важно! Хорошо размешайте соль, чтобы она растворилась. Так вода, являясь в чистом состоянии диэлектриком, станет хорошо проводить электричество. Перед началом эксперимента протрите стол от возможной влаги, а затем поставьте на него источник питания и стакан с водой.

Опускаем оба электрода, находящихся под напряжением, в воду. При этом следите, чтобы в воду был опущен только графит, а сам провод не должен касаться воды. Начало эксперимента может затянуться. Время зависит от многих параметров: от состава воды, качества проводов, качества графита и, естественно, напряжения источника питания. У меня начало реакции затянулось на несколько секунд. На том электроде, который был подключён к плюсу батареек начинает выделяться кислород. На электроде, подключённом к минусу будет выделяться водород. При этом заметьте, что пузырьков водорода больше. Мелкие пузырьки облепляют ту часть графита, которая погружена в воду. Затем некоторые из пузырьков начинают всплывать.

Электрод перед началом опыта. Пузырьков газа пока нет. Пузырьки водорода, появившиеся на электроде, подсоединённому к отрицательному полюсу батареек

Какие опыты могут быть ещё? Если с водородом и кислородом вы уже наигрались, можно приступать ко второму опыту. Он более интересен, особенно для домашних экспериментаторов. Интересен тем, что его можно не только увидеть, но и унюхать. В прошлом опыте мы получали кислород и водород, которые, как я считаю, не слишком зрелищны. А во втором опыте мы получим два вещества (полезных в хозяйстве, между прочим). Перед началом эксперимента следует прекратить предыдущий эксперимент и просушить электроды. Теперь берите поваренную соль (которой вы обычно используете на кухне) и растворяйте её в воде. На этот раз в большом количестве. Собственно, большое количество соли — это единственное, чем второй опыт отличается от первого. После растворения соли можно сразу повторить эксперимент. Теперь происходит другая реакция. На положительном электроде теперь выделяется не кислород, а хлор. А на отрицательном всё так же выделяется водород. Что же касается стакана, в котором находится раствор соли, то в нём после продолжительного электролиза останется гидроксид натрия. Это всем знакомый едкий натр, щёлочь.

Хлор вы сможете учуять по запаху. Но для большего эффекта я советую взять напряжение хотя бы 12 В. Иначе запах можно не почувствовать. Наличие щёлочи (после очень продолжительного электролиза) в стакане можно проверить несколькими способами. Самый простой и жестокий — опустить руку в стакан. Народная примета гласит, что если начнётся жжение — в стакане есть щёлочь. Более гуманный и наглядный способ — это лакмусовая бумажка. Если же у вас настолько бедная школа, что не может даже лакмус купить, вас выручат подручные индикаторы. Одним из таких, как говорят, может послужить капелька свекольного сока ? Но можно просто капнуть в раствор немного жира. Насколько мне известно, должно произойти омыление.

Для особо любознательных я опишу, что же именно происходило во время опытов. В первом опыте под действием электрического тока происходила такая реакция:
2 H2O >>> 2 H2 + O2
Оба газа, естественно, всплывают из воды на поверхность. Кстати, всплывающие газы можно уловить ловушками. Сами сделать сможете?

Во втором опыте реакция была уже совсем другой. Она тоже была инициирована электрическим током, но теперь в качестве реагентов выступила не только вода, но и соль:
4H2O + 4NaCl >>> 4NaOH + 2H2 + 2Cl2
Учтите, что реакция должна идти в избытке воды. Чтобы определить, какое же количество соли является максимальным, можно высчитать его из вышеприведённой реакции. Можете ещё подумать, как усовершенствовать прибор или какие ещё опыты можно провести. Вполне возможно, что электролизом можно получить гипохлорит натрия. В лабораторных условиях его обычно получают пропусканием газообразного хлора через раствор гидроксида натрия.

Как сделать аппарат живой и мертвой воды своими руками?

Каждый человек мечтает о долгой и счастливой жизни, которую не омрачают различные недуги. И это желание всегда стремилась осуществить народная медицина. Ею накоплен огромный опыт по изучению лекарственных растений и создано множество рецептов, избавляющих от разнообразных болезней.

История применения

Дары природы уже давно используются человеком в лечебных целях. Один из них, который заслуживает особого внимания, – «живительная водица». Еще в древних рукописях исследователи нашли упоминание о том, что во время своих боевых походов вдоль горных цепей Памира, Кавказа и Тянь-Шаня Александром Македонским был найден источник целебной воды. Он набрал жидкость в кувшин, однако его дочь похитила ее, вылила на себя. В результате этого она стала невидимой и бессмертной.

Сохранились также сведения и о том, что многие Римские Папы, китайские императоры и другие сильные мира сего организовывали экспедиции в поисках позволяющего получить бессмертие эликсира. Все эти сказки и легенды являются ярким подтверждением тому, что наши предки знали о существовании водицы живой и мертвой.

Источники

Сегодня может быть изготовлена живая и мертвая вода своими руками. А в древние времена люди брали ее из природных источников.

Современные исследования

Сегодня для получения целебной жидкости нет необходимости в поисках ее источников. Для этого достаточно сделать аппарат живой и мертвой воды в домашних условиях. При его использовании в результате гидролиза и получается так называемая активированная вода.

Исследованиям свойств этой жидкости были заняты советские ученые еще в 80-х годах 20 в. Однако результаты всех опытов и экспериментов для широкой публики были просто засекречены. Однако все тайное рано или поздно становится явным. По истечении некоторого времени о результатах проводимых опытов узнали врачи и народные знахари. И здесь большую роль сыграли работы западных исследователей. Полученные ими результаты можно было прочесть в опубликованных научных статьях.

Исследования доказали, что живая вода, которую также называют католитом, благодаря гидролизу становится отрицательно заряженной. Подобное превращение способствует получению ею высоких регенерирующих и иммуностимулирующих свойств. Это и дает возможность жидкости, прошедшей процесс гидролиза, стать целебной и применяться для избавления от многих недугов.

Уникальные свойства такой воды были подтверждены Фармакологическим Комитетом СССР. При этом было сказано об ее абсолютной безвредности не только при наружном, но и при внутреннем использовании.

Вода, скапливаемая после электролиза возле положительного электрода, называется анолитом. Ее уникальные свойства были известны народным знахарям с незапамятных времен. Благодаря этой воде людям удавалось спастись от гниющих ран и пролежней.

Получение целебной жидкости

Для того чтобы получить активированную воду, не нужно искать какие-то далекие и порой недоступные источники. Для этого достаточно открыть кран и применить специальный прибор.

Исходя из основных понятий химии, живая вода имеет щелочные свойства. Они и способствуют заживляющему действию. Свойства же мертвой воды – кислотные. Именно поэтому она проявляет дезинфицирующий эффект.

Электрический ток при прохождении через обычную воду коренным образом изменяет имеющуюся у нее внутреннюю структуру. При этом он стирает находящуюся в жидкости вредоносную экологическую информацию. После подобной обработки вода и делится на живую и мертвую. Причем каждая из этих двух фракций имеет лечебные качества.

Эксперименты по применению активированной жидкости

Первый аппарат живой и мертвой воды в нашем отечестве был изобретен Н. М. Кратовым. Идея создания данного прибора пришла автору не случайно. В 1981 г. Кратов лечился в больнице. Там ему был поставлен диагноз «аденома предстательной железы». Одновременно с этой патологией он страдал от воспалительного процесса в почках. Курс лечения в больнице длился в течение месяца, однако ощутимых результатов так и не принес. Именно поэтому врачи предложили Кратову операцию. От хирургического вмешательства он отказался и был выписан домой.

В это же время сын Кратова страдал от длительно незаживающей раны. И автор, создавший аппарат живой и мертвой воды, стал испытывать свойства целебной жидкости на пораженном участке на коже сына. Результаты не заставили себя долго ждать. Рана затянулась в течение двух дней. Такой успех окрылил изобретателя. Он начал принимать такую воду сам, и вскоре поправил свое здоровье. Вместе с аденомой от него ушли радикулит и опухоль ног.

Область применения

Помимо Кратова целебные свойства подобной воды изучал Г.Д. Лысенко, а также еще целый ряд авторов. В результате проведенных исследований стало очевидно, что вода, как живая, так и мертвая, способна избавить человека практически от пятидесяти наименований различных заболеваний, начиная ангиной и заканчивая язвой желудка и двенадцатиперстной кишки.

В этом перечне находятся и столь распространенные болезни, как простуда и грипп, насморк и радикулит, гипертония и т.д.

Изготовление в домашних условиях

Для того чтобы пользоваться целебной жидкостью, достаточно изготовить аппарат живой и мертвой воды своими руками. Конечно, подобные приборы несложно найти и в продаже. Купить и доставить их не составит особого труда.

Однако приобретенный аппарат для получения живой и мертвой воды при его детальном рассмотрении имеет довольно простую конструкцию. Это наводит на мысль об экономии денег. Ведь цена на подобный прибор не столь уж и мала. Гораздо проще изготовить аппарат живой и мертвой воды своими руками. Это потребует лишь немного времени и небольшого количества материалов. Умение же у наших мастеров присутствует всегда.

Основные детали

Для того чтобы соорудить аппарат живой и мертвой воды своими руками, понадобится:

– стеклянная банка;
– диодный мостик, выпрямляющий сетевое напряжение;
– мешочек, пошитый из водонепроницаемой ткани;
– два электрода;
– сетевой шнур.

При помощи умелых рук все эти детали легко превратятся в самодельный аппарат живой и мертвой воды.

Электроды

Данная деталь обязательно должна быть выполнена из пищевой нержавеющей стали. Для этой роли великолепно подходят салатницы, оставшиеся в доме еще с советских времен. Но если их нет, то подойдет любая посуда, произведенная из нержавейки. Для анода может быть использован графитовый стержень.

Если аппарат для приготовления живой и мертвой воды будет собран с использованием пол-литровой банки, то длина электродов должна составлять 100 мм. Однако этот объем может быть увеличен. Банку для того, чтобы создать аппарат живой и мертвой воды своими руками, можно взять и трехлитровую. В любом случае электроды можно удлинить. Их размер должен быть таким, чтобы расстояние между металлом и дном стеклянной емкости составляло не менее 5-10 мм.

Листы нержавейки, подходящей для изготовления анода и катода, в толщину должны составлять 0,8-1 мм. Некоторые умельцы утверждают, что аппарат для изготовления живой и мертвой воды был создан ими с использованием алюминиевых электродов.

Мешочек

Эта деталь понадобится для отделения получаемых фракций воды. Как правило, для изготовления мешочка берут брезент. Это может быть кусок от пожарного шланга или противогазной сумки. Но в любом случае материал для мешочка не должен содержать в себе никаких пропиток. Для того чтобы убедиться в отсутствии посторонних веществ, приготовленный кусок необходимо поместить в воду и прокипятить. Компоненты, используемые при пропитке, проявят себя при нагреве.

Длина готового мешочка должна находиться в полном соответствии с высотой стеклянной банки, которую применяют для создания аппарата. При крое этой детали отрезают необходимую длину брезента. Низ мешочка зашивают кусочком этого же материала или вставляют пищевой пластик.

Сборка прибора

Схема аппарата, получающего живую и мертвую воду, довольно проста, и ознакомиться с ней можно в статье. Для сборки прибора на положительном электроде делается П-образный пропил. Он необходим для размещения на аноде матерчатого мешочка. В нем будет происходить сбор мертвой воды. На катоде такого пропила делать не нужно.

Далее к электродам крепится выпрямительный диодный мост. При этом важно пометить положительный и отрицательный выходы на пластину («+» и «-»). Для соблюдения безопасности мост может быть накрыт крышкой. В случае использования диода с резьбовым креплением резьба должна быть прикреплена к положительному электроду.

Существует и еще один способ сборки подобной схемы. Ее можно выполнить с выпрямительным мостиком. В таком случае еще более интенсивно будет производиться живая и мертвая вода. Аппарат (отзывы умельцев подтверждают это) станет в четыре раза мощнее. Ускорения процесса приготовления целебной жидкости особенно важно при систематическом ее использовании.

К диодному мосту подводится сетевой шнур с вилкой. Его длина должна быть не менее 500-700 мм. При этом важно провести изоляцию всех открытых электрических соединений, ведь для процесса, в результате которого получается живая вода и мертвая вода, прибор потребляет переменное напряжение в 220 В. Далее электрод, который помечен знаком “минус”, размещают в брезентовый мешочек, в банку заливается вода, и вся конструкция начинает работать при подключении к электрической сети.

Читайте также:  Способы монтажа отопления дома и подключение батарей

Приготовление воды

Получить целебную жидкость довольно просто. Для этого в матерчатый мешочек надо залить воду. Далее в него помещают положительный электрод. Вся эта конструкция погружается в банку с водой. И здесь также имеются некоторые нюансы. Воду в банке не слудет наливать до краев. Она должна быть немного ниже верхнего края мешочка.

Весь процесс длится не более 5-10 минут. Далее электроды вынимаются из банки. Делать это нужно очень аккуратно. В противном случае произойдет смешение двух полученных фракций. По окончании процесса вода из матерчатого мешочка выливается в отдельную посуду.

Сборка прибора с другой конструкцией

В связи с необходимостью бережного обращения с полученными фракциями данное устройство является не очень удобным. Кроме того, должна быть соблюдена определенная техника безопасности, когда работает аппарат живой и метрвой воды.

Инструкция к нему предупреждает, что все манипуляции по заливке воды и изъятию конечного продукта должны быть проделаны без включения устройства в сетевую розетку.

В схеме этой конструкции, как и в предыдущем варианте, желательно использовать лампочку, имеющую мощность 15 Вт. Их, как правило, применяют в швейных машинах и холодильниках. При коротком замыкании электродов лампочка сыграет роль предохранителя, а если процесс не будет иметь никаких сбоев – индикатора. В начале производства воды свет от нее будет достаточно ярким. Ближе к окончанию процесса лампочка начнет тускнеть. Сигналом об окончании производства активированной воды будет служить ее полное отключение.

Правила использования целебной воды

Католит, приготовленный в приборе, является щелочным раствором голубоватого оттенка. Он представляет собой прозрачную мягкую жидкость, обладающую щелочным привкусом с рН от 8,5 до 10,5. Католит, или живая вода, способен сохранять свои лечебные свойства не менее двух суток. Только при этом важно, чтобы были соблюдены условия хранения. Живая вода должна находиться в закрытой емкости и в затемненной комнате.

Аналит же имеет желтоватый оттенок. Кроме этого, отличие мертвой воды от живой кроется в ее вяжущем кисловатом вкусе и несколько кислотном аромате. Свои свойства анолит сохраняет в течение половины месяца. Но происходит это только в том случае, когда хранится он в закрытой емкости. Кислотность такой жидкости – от 2,5 до 3,5 рН.

Перед использованием активированную воду следует подогреть. Однако при этом необходимо соблюдать некоторую осторожность. Вода должна быть налита в керамическую или эмалированную посуду и подогрета на небольшом огне. Использование электроплиты вызовет утрату ее полезных свойств. Категорически запрещено доводить такую воду до кипения. В этом случае также становится бесполезной.

Самодельный прибор для получения живой и мертвой воды

В статье дается краткое описание свойств и способов применения активированной воды. Приведено описание устройства двух приборов для ее приготовления.

Легенды и сказки о живой воде

Целебные свойства живой и мертвой воды известны очень давно. Еще в русских народных сказках погибшего героя-богатыря воскрешали при помощи мертвой и живой воды. О живой воде упоминается во многих литературных источниках.

Еще в рукописях Древней Руси XIV в. упоминается, что Александр Македонский во время своего исторического похода на край света вдоль Траверса (горная цепь Кавказ, Памир, Тянь – Шань) обнаружил источник с живой водой. Царь приказал налить кувшин этой воды и заставил своего воина ее охранять: он надеялся, что в случае гибели эта вода его оживит. Но дочь Александра, Панорея, соблазнила юношу-охранника, заколола его ножом, выпила немного воды из кувшина, а остальную вылила на себя. После этого она стала бессмертной и невидимой.

Сохранились исторические сведения, что эликсир бессмертия пытались найти многие китайские императоры, Римские Папы и другие правители и сильные мира сего. Для поиска эликсира бессмертия организовывались целые экспедиции.

Экспедицию по поиску живой воды, о которой узнали от местных жителей – индейских народов, в XVI в. организовали испанские завоеватели. Искали они ее на островах Атлантического океана и Карибского моря, но им удалось найти лишь несколько целебных источников и открыть острова Антильского архипелага.

Уже при Петре I в России поиском живой воды – эликсира бессмертия занимался один из сподвижников царя генерал – фельдмаршал Яков Велимович Брюс (1670-1735). После смерти Брюса, согласно завещанию, его тело должны были окропить живой водой. Но получилось так, что при открытии волшебного пузырька, слуга всю воду просто вылил на пол. Лишь малая толика попала на руку Брюса. Могила Брюса была вскрыта для перезахоронения в двадцатых годах XX в. – одна его рука осталась нетленной.

Все эти легенды и сказки говорят о том, что нашим предкам было известно о существовании живой и мертвой воды. Самая обычная вода до сих пор не изучена до конца, современная наука до сих пор многого о ней не знает.

Физико–химические свойства воды весьма многочисленны, поэтому она может оказывать самые разнообразные воздействия на растительный и физический мир: в одних случаях она приносит жизненную энергию растениям и организмам, а в других отбирает. В определенных условиях вода может обладать целительными свойствами, не замерзать при очень низких температурах, и даже светиться в темноте.

В средней Азии, например, отмечено, что урожай хлопчатника, поливаемого водой из подземного источника, выше на 30%, чем при поливе водой из арыка. Такое происходит оттого, что на открытом воздухе вода интенсивно отдает жизненную энергию просто в окружающее пространство. Причиной тому ветер, солнце и многое другое. Поэтому вода с гор доставлялась на поля через подземные тоннели – кяризы. Таким образом, в одних источниках содержится вода живая, а в других мертвая.

На вопрос о том, в каких источниках находится мертвая вода, ответить несложно. Это болота, стоячие озера и колодцы, то есть вода во всех стоячих водоемах. Такая вода, по мнению древних целителей, лишена живительной энергии, поэтому на их врачебном языке она называлась «ЦИ». Эта вода наиболее подходит для приготовления целебных отваров и настоев. По мнению древних целителей, мертвая вода приводит к преждевременному старению, изнашиванию организма.

Живая вода содержится в горных реках, водопадах, это дождевая вода, особенно во время грозы, разумеется, если дождь не кислотный. Также живой водой является вода от таяния ледников. Все эти воды ведут человека к долголетию и полезны для здоровья.

Живая и мертвая вода для лечения

Чтобы получить живую и мертвую воду вовсе не обязательно искать ее природные источники – горные реки или болота. Такая вода сейчас с успехом может быть получена с помощью электролиза обычной воды даже в домашних условиях. Часто такую воду называют активированной водой.

Исследованиями свойств живой и мертвой воды еще в 80-е годы прошлого века занимались ведущие медицинские учреждения СССР. Но исследования в этой области проводились, как и многие другие, в обстановке секретности и большая часть результатов на афишировалась и для широких кругов публики была недоступна. Но, как гласит народная мудрость, шила в мешке не утаишь, поэтому тайна достигла заинтересованных людей, – о ней узнали врачи и народные целители.

Наверно, в этом плане больше помогли работы зарубежных исследователей, ведь там у них подобные разработки велись открыто, и даже в условиях железного занавеса их результаты были доступны в СССР. Эти разработки попросту опубликовывались в прессе.

Современной наукой доказано, что живая вода, также называемая католитом, в процессе электролиза получает отрицательный потенциал. От такого превращения она обладает весьма высокими регенерирующими и иммуностимулирующими свойствами, которые дают ей возможность успешно применяться при лечении многих заболеваний. Даже Фармакологический Комитет СССР подтвердил уникальные свойства живой и мертвой воды, ее абсолютную безвредность, как при наружном, так и внутреннем применении и возможность применения при лечении множества болезней.

Мертвую воду, полученную в процессе электролиза также называют анолитом, ведь она скапливается около положительного электрода – анода. Свойства мертвой воды известны достаточно давно, – именно благодаря ее антибактериальным свойствам сотням людей удалось спастись от пролежней и гниющих ран.

Получение живой и мертвой воды

Активированная вода получается с помощью электролиза обычной водопроводной воды. С точки зрения химии живая вода обладает щелочными свойствами, которые оказывают заживляющее действие, а мертвая вода имеет свойства кислотные, поэтому у нее налицо дезинфицирующие свойства. Проходя через обычную воду, электрический ток меняет ее внутреннюю структуру и способствует стиранию вредной экологической информации.

После обработки электричеством вода разделяется на две фракции, которые обладают целебными свойствами. При лечении болезни живую и мертвую воду принимают в различных сочетаниях. Для разных болезней эти сочетания различны, достаточно хорошо изучены, в Интернете имеется множество статей и таблиц о лечении активированной водой.

Первые опыты применения активированной воды

Автором прибора для приготовления живой и мертвой воды у нас в отечестве считается Н.М. Кратов. История создания прибора такова. В 1981 году Н.М. Кратов находился на излечении в больнице по поводу аденомы предстательной железы и воспаления почек. После более чем месяца лечения врачи предложили операцию аденомы. От такого предложения он отказался, поэтому был просто выписан.

Как раз в это время на руке у сына была рана, не заживающая более полугода. Испытания свойств активированной воды были проведены на ней и превзошли все ожидания: рана зажила уже на второй день.

Окрыленный успехом автор начал сам принимать живую воду по полстакана в день три раза перед едой, и вскоре почувствовал бодрость. Вместе с аденомой через неделю прошли опухоль ног и радикулит.

Чтобы убедиться в эффективности своего лечения Н.М. Кратов обратился в поликлинику, и проведенные анализы показали, что болезни его полностью оставили. Вдобавок ко всему пришло в норму кровяное давление.

Со временем к Н.М. Кратову стали обращаться за помощью люди. При лечении живой и мертвой водой всего за два дня прошел ожог третьей степени на руке у соседки, полученный кипятком.

В течение целых шести месяцев гноилась десна у соседского мальчика, образовался нарыв в горле, а желаемого результата традиционные медикаментозные средства не давали. По совету автора прибора горло и десну полоскали 6 раз в день мертвой водой (дезинфицировали), после чего принимали внутрь по стакану живой воды. В результате всего лишь за 3 дня пришло полное выздоровление.

Методы лечения активированной водой

Кроме Кратова исследованиями свойств активированной воды занимался Г.Д. Лысенко и еще многие авторы. Благодаря их стараниям стало известно, что с помощью живой и мертвой воды возможно излечение почти от 50-ти заболеваний, начиная от ангины и заканчивая язвой двенадцати – перстной кишки и желудка. В этот список входят также такие распространенные болезни, как грипп, простуда, насморк, ожоги, радикулит, повышенное кровяное давление и многие другие. Все это достаточно легко найти в Интернете, там же указаны и способы лечения.

Аппарат живой и мертвой воды своими руками

Аппараты для производства живой и мертвой воды сейчас нетрудно найти в продаже, во всяком случае, в Интернете такой рекламы полно. Но, если такой прибор купить и посмотреть на его устройство, то можно заметить, что цена, отданная за столь простой прибор, достаточно велика. Проще было бы изготовить его своими руками, тем более, что для этого понадобится совсем немного материалов, времени, а умения нашим мастерам – самодельщикам не занимать. Схема прибора для получения активизированной воды показана на рисунке 1.

Рисунок 1. Схема прибора для получения живой и мертвой воды.

На этой схеме видно, что весь прибор состоит из двух металлических электродов, помещенных о обычную стеклянную банку. Электроды с помощью винтов и гаек крепятся на крышке банки. Один из электродов подключен напрямую, это будет катод, а другой подключен через диод.

При указанной на рисунке полярности подключения левый электрод является анодом.

На положительном электроде будет выделяться мертвая вода – анолит, поэтому для ее сбора на аноде укреплен мешочек из плотной ткани. Ткань должна быть достаточно плотной, но тонкой, очень подходит для этих целей брезент от противогазных сумок или бязь. Критерием для выбора ткани можно считать прохождение через нее воздуха. Для этой цели достаточно ткань приложить ко рту и попробовать продуть сквозь нее воздух: сопротивление ткани должно быть достаточно заметно.

Главными деталями устройства являются электроды, размеры которых показаны на рисунке 2.

Рисунок 2. Электроды.

Длина электродов на рисунке указана 100 мм. Это справедливо, если будет применяться поллитровая банка. В принципе объем банки можно увеличить до трех литров, тогда просто потребуется удлинить электроды, но так, чтобы они не касались дна банки не менее чем на 5 – 10 мм.

В качества электродов используется листовая нержавейка толщиной 0,8 – 1,0 мм. Лучше, если это будет «пищевая» нержавейка, хотя некоторые авторы говорят, что сами пользуются даже алюминиевыми электродами.

На рисунке видно, что на электроде имеется П-образный пропил. Такой пропил необходим лишь на положительном электроде – аноде для того, чтобы на нем можно было повесить матерчатый мешочек для сбора мертвой воды. На другом электроде такой пропил делать не потребуется.

Электроды крепятся к банке при помощи обычной капроновой крышки как показано на рисунке 1. Известно, что такие крышки механической прочностью не отличаются, поэтому чтобы поведение электродов не было непредсказуемым, следует их укрепить на крышке через уплотняющую изолирующую прокладку. Ее можно выполнить из стеклотекстолита конечно же, без фольги, текстолита или любой другой пластмассы. Конструкция прокладки показана на рисунке 3.

Рисунок 3. Изолирующая прокладка.

На рисунке 4 показано, как эта прокладка устанавливается на капроновую крышку банки. Показаны отверстия для крепления электродов и отверстие для выхода газов.

На рисунке 5 показано крепление электродов и прокладки к крышке.

Рисунок 5. Крепление электродов.

Если использовать диод с резьбовым креплением, то его резьба будет крепить положительный электрод. Принципиально ничего не мешает вместо одного диода использовать выпрямительный мостик. В этом случае просто возрастет в 4 раза мощность устройства и соответственно ускорится процесс приготовления, что при систематическом использовании устройства немаловажно.

Приготовление активированной воды

Приготовление живой воды достаточно просто. Просто надо в матерчатый мешочек залить воды, укрепить его на положительном электроде, и после этого вставить в банку залитую водой. Вода в банке не должна доходить до краев и быть чуть ниже верхнего края матерчатого мешочка. Более точно уровень заливки воды в банку устанавливается опытным путем.

Приготовление живой воды занимает не более 5 – 10 минут. После этого надо вынуть электроды из банки и очень аккуратно, чтобы не смешать полученные фракции, вылить в отдельную посуду мертвую воду из матерчатого мешочка.

Вот это вот «аккуратно» – едва ли не самый главный недостаток описываемой конструкции, разумеется, если не задумываться о возможности поражения электрическим током. Поэтому все манипуляции, начиная от заливки свежей воды и заканчивая получением живой и мертвой, лучше проделывать, выключив устройство из сетевой розетки.

Кроме уже описанной конструкции можно рекомендовать для изготовления конструкцию прибора без матерчатого мешка. В этом случае потребуется две отдельных емкости, только без горлышка, как у банок, а с прямыми отвесными краями. Конструкция электродов остается без изменений, только устанавливать их придется отдельно на каждую емкость.

Для того, чтобы обеспечить электрический контакт между этими банками их следует соединить ватным жгутом, замотанным в марлю. При этом жгут следует предварительно смочить водой. Такой жгут соединит банки электрически и обеспечит путь для прохождения ионов между банками. Таким образом в одной банке будет скапливаться живая вода, а в другой мертвая. Поэтому после окончания процесса достаточно просто выключить установку из сети и получить католит и анолит просто из разных банок, причем одинаковой емкости.

Всю конструкцию, как эту, так и предыдущую можно включить в сеть не напрямую, а через лампочку мощностью около 15 Вт. Такие применяются в холодильниках и швейных машинах. В случае короткого замыкания электродов она выполнит роль предохранителя, а в случае нормальной работы – индикатора: в начале процесса лампа будет светить ярко, ближе к окончанию яркость значительно упадет, после чего лампа совсем погаснет. Это является сигналом о готовности активированной воды.

В процессе приготовления воды на электродах и на самой банке будет образовываться накипь, удалить которую будет можно раствором лимонной или соляной кислоты. После этого банку следует тщательно промыть.

Не следует заливать в прибор воду сразу из-под крана. Лучше, если дать воде отстояться не менее 5 – 6 часов, чтобы из нее вышел хлор, иначе может получиться соляная кислота. Совсем хорошо, если водопроводную воду профильтровать через любой бытовой фильтр и вскипятить.

Искусственный интеллект нашего сайта решил, что эти статьи вам будут особенно полезны:

Ссылка на основную публикацию