Что такое теплообменник в системе отопления

Разновидности теплообменников для отопления: как разобраться в них и выбрать нужный?

Теплообменник — неотъемлемый элемент системы отопления, в котором происходит процесс обмена теплом между несколькими средами.

Существует несколько разновидностей теплообменников.

Для чего нужен теплообменник ГВС в системе отопления

Устройство представляет собой 2 плиты: одна из них статическая, а другая — подвижная. Обе они с отверстиями, между которыми зафиксированы загерметизированные прокладками пластины.

Суть принципа работы такого прибора в том, что пластины гофрированного типа образуют каналы, по которым циркулирует жидкость. Повышение коэффициента переданного тепла от её прогретой части к холодной возникает за счёт увеличения площади контакта.

В пристенном слое гофрированного типа со временем образуется процесс турбулентности. По разным сторонам одной пластины происходит перемещение отдельной среды. Такой способ движения предотвращает их перемешивание.

Прогрев обеих сред возникает вследствие присоединения устройства к трубопроводу. После того как среда закончит своё прохождение по всем каналам, она покинет теплообменник.

Такое оборудование делает возможным:

  • эксплуатировать при необходимости полученного от носителя энергии вторичного тепла для бытовых нужд;
  • применять остаточное тепло при поступлении электроэнергии;
  • формировать необходимый температурный режим для проведения химических процессов;
  • удерживать температурный режим теплоносителя на установленном уровне в бытовых отопительных системах.

Существуют следующие виды теплообменников.

Смесительные водяные

Представляют собой приборы, в которых тепло передаётся через непосредственный контакт двух сред: горячей и холодной.

Суть действия такого теплообменника в том, что в специальной камере соединяются жидкость и пар, скорость которого при этом превышает сверхзвуковое значение.

Разгоняет его до такого показателя расчётное сопло. За счёт такого смешивания и происходит прогрев жидкости и паровая конденсация, а теплоноситель требуемой температуры циркулирует по системе отопления.

Камера прибора предусматривает наличие конденсационного вакуума. Работа теплообменника этой разновидности возможна даже при условии малого парового давления.

Поверхностные

Конструкция таких приборов представлена в виде биметаллических труб с алюминиевым оребрением накатного типа.

В этих устройствах происходит процесс обтекания твёрдого покрытия воздухом. Температуры поверхности и воздушного потока отличаются.

Тепловой обмен между средами осуществляется через стенку с нанесённым на неё специальным теплопроводящим материалом. Контура полностью изолированы друг от друга.

Поверхностные теплообменники делятся на 2 типа:

  • регенеративные (направление потока среды имеет свойство меняться);
  • рекуперативные (обмен теплом от одного теплоносителя к другому осуществляется через неплотные стенки контура, при этом направление потока среды остаётся постоянным).

Рекуперативный и его разновидности

Они подразделяются в соответствие с особенностями конструкции и областью применения.

Кожухотрубчатые

Это самые простые устройства. Они состоят из большого числа маленьких трубопроводов, которые спаяны в единый пучок и помещены в кожух. Такие теплообменники довольно громоздкие и занимают много места.

Применяются в испарителях, холодильниках, нагревателях, конденсаторах.

Погруженные

Представляют собой змеевики плоской либо цилиндрической форм, погруженные в ёмкость с жидкостью.

Эти теплообменники считаются неэффективными вследствие того, что с внешней стороны змеевика наблюдается низкий уровень теплоотдачи, а процесс омывания жидкостью проходит в крайне малом количестве.

Справка! Использование погруженного теплообменника будет продуктивным, если жидкость в ёмкости будет закипать или содержать механические дополнения.

Погруженные аппараты применяются в качестве холодильников и конденсаторов, а также для прогрева воды и растворов технологического типа.

Трубчатые

Приборы этой разновидности представляют собой 2 трубы, расположенные внутри друг друга и имеющие отличные диаметры. Так жидкость, нагрев или охлаждение которой требуется произвести, напрямую контактирует с теплоносителем.

Трубы для теплового обмена зафиксированы вдоль друг друга. За счёт разницы между их диаметрами у теплоносителя не возникает препятствий при его циркуляции.

Применяются такие теплообменники преимущественно в пищевой промышленности, в частности, в виноделии и при производстве молочной продукции.

А также использование таких приборов широко распространено в нефтяной, газовой, химической промышленностях.

Оросительные

Теплообменники этого типа представляют собой прямые трубы, расположенные друг над другом и орошаемые водой с наружной стороны. Они фиксируются с помощью сварки или применения «калачей» на фланцах. Орошающая жидкость идёт через верхний жёлоб, края которого имеют форму в виде зубчиков. Часть жидкости, подаваемой для орошения трубопроводов, испаряется.

Широко распространено использование таких агрегатов в качестве конденсаторов в холодильниках.

Графитовые: что это такое

Теплообменники блочного строения. Все прямоугольные или цилиндрические составляющие прочно зафиксированы специальными резиновыми или тефлоновыми прокладками и крышками.

Внутри этой конструкции происходит движение жидкости по перекрёстной схеме.

Изначально для устранения пористости графита его обрабатывают специальными смолами из формальдегида. Одна или обе среды при этом являются коррозионно-активными.

Важно! Если обе жидкости агрессивные, то обязательно по бокам на прижимные плиты наносятся специальные пластины из графита.

За счёт устойчивого воздействия таких приборов их применение пользуется большой популярностью в химической промышленности.

Пластинчатые воздушные с вентилятором

По своей конструкции делятся на разборные и паяные. Первые имеют большое распространение в силу того, что их можно разбирать и собирать, а при необходимости прочистки и увеличивать их эффективность путём наращивания дополнительных пластин.

Прибор состоит из пластин, между которыми расположены прокладки из резины, 2 концевые камеры, болты для стягивания и рама.

Стальные пластины имеют толщину 0,7 мм, их проточная сторона гофрирована или ребристая.

С целью герметизации процесса теплообмена к пластинами фиксируются прокладки из резины.

Теплоноситель в таких теплообменниках может перемещаться в прямом, обратном направлениях или смешанно.

Применяются такие устройства в отоплении, вентиляции, кондиционировании и холодильных установках. Кроме того, он используется в текстильной, нефтяной, целлюлозно-бумажной и других промышленностях.

Пластинчато-ребристые: принцип работы

Суть конструкции такого теплообменника в том, что есть единая система из раздельных пластин, между которыми расположены ребристые насадки.

Их разновидности представлены в широком диапазоне.

Для грамотной подборки формы каналов для прохождения жидкости, требуется использование различных насадок.

Важно! Применение таких устройств для теплового обмена возможно при температуре неагрессивных жидких и газообразных сред от +200 °C до —270 °C.

Используются эти теплообменники в различных транспортных установках.

Оребрённо-пластинчатые

Их отличие от вышеуказанных видов в том, что в основании конструкции используются оребренные панели с тонкими стенами, сформированные путём высокочастотной сварки.

Все они зафиксированы поочерёдно с возможностью поворота на 90 °C.

Применение таких теплообменников часто встречается как в промышленности (в тепловых технологических процессах), так и в быту (система вентиляции с возвращением тепла).

Спиральные

Бывают горизонтальные и вертикальные. Их конструкция состоит из 2 тонких листов из металла, зафиксированных к керну и загнутых в форме спиралей. Для придания листам дополнительной жёсткости к ним по обеим сторонам с помощью сварки присоединены бобышки дистанции.

У спиральных каналов есть ограничения в виде торцевых крышек. Уплотнения таких проходов производят путём заваривания с одной стороны и уплотнения прокладкой — с другой. По мере её износа происходит заваривание и с другой стороны.

Таким образом, исключается вероятность спешивания теплоносителей.

Используется этот прибор в пищевой, металлургической, целлюлозно-бумажной, горнодобывающей, нефтяной, газовой и других областях промышленности.

Как подобрать теплообменник ЦТП

При выборе важно обращать внимание на основные технические характеристики оборудования:

Толщина и материал пластин

Чем ниже масса прибора, тем выше коэффициент теплоотдачи. При этом важно ориентироваться на рекомендуемую толщину пластин. В основном она варьируется от 0,4 мм до 0,7 мм, подходящий материал — нержавеющая сталь.

Давление

Чем меньше этот показатель, тем ниже стоимость агрегата. Чтобы не наблюдалось сбоев в системе отопления, требуется обязательно знать это значение и указать его продавцу при приобретении.

Коэффициент передачи тепла

Это один из главных критериев выбора. Он показывает, какую единицу тепла способно передать устройство за определённое время от нагретой среды к холодной через площадь 1 кв. м. и разницу температур 1 К.

Для увеличения теплопередачи требуется меньшее количество пластин. Стоимость у такого теплообменника будет ниже. У оборудования с высокой ценой

Справка! При усилении потока возрастает и потребность в большом количестве чисток за счёт образования отложений.

Рекомендуемый и оптимальный коэффициент тепловой передачи — 7000 Вт/кв. м*К.

Масса

Вес теплообменника напрямую зависит от того, из какого материала он изготовлен. Прежде чем приобретать прибор, требуется определить, сколько места под него есть. При малых площадях лучше воздержаться от крупногабаритного оборудования.

Запас поверхности для теплообмена

У качественного агрегата этот показатель составляет 10—15%, в противном случае его работа не будет эффективной, так как малейший недогрев до установленной температуры или загрязнение приведут к прекращению рабочего процесса.

Помимо вышеуказанных параметров, также стоит учитывать количество тепловых потерь, основные свойства теплоносителя, характеристики труб для обмена теплом.

Типы и материалы

Разновидность теплообменника подбирается исходя из его целевого назначения и применяемого теплоносителя.

Самыми надёжными и долговечными считаются приборы из чугуна. Они не боятся коррозии и обладают высокой теплоёмкостью.

Минусы: крупногабаритность и медленная перестройка под заданное колебание температур. Они занимают достаточно много места.

У стальных агрегатов ощутимее ниже цена, но и уровень эффективности тоже занижен.

Самые распространённые — теплообменники из меди. У них высокий коэффициент теплопроводности, технологичности.

Для увеличения продолжения срока эксплуатации такие приборы с наружной стороны покрываются специальным защитным слоем.

Стальные теплообменники самые дешёвые, подвержены коррозии и имеют большой вес.

Популярные производители: фото

Все производители агрегатов дают гарантию на свою продукцию от 6 месяцев до 1 года.

Большим спросом пользуется продукция следующих фирм:

    Sondex;

Фото 1. Пластинчатый теплообменник, резьбовое соединение, толщина пластин 0,5 мм, производитель – «Sondex», Дания.

Читайте также:  Что такое точка росы в строительстве
  • Ридан;
  • Alfa Laval;

    Фото 2. Пластинчатый теплообменник модели AQ2S, гофрированная поверхность пластин, производитель – «Alfa Laval».

  • Gea Машимпэкс;
  • Danfoss;

    Фото 3. Паяный пластинчатый теплообменник модели XB 04-1-8, изготовлен из кислотостойкой нержавеющей стали, производитель – «Danfoss».

  • Funke;
  • Этра.
  • Полезное видео

    Ознакомьтесь с видео, в котором рассказывается, как устроены кожухотрубные теплообменники.

    Низкий напор горячей воды и другие признаки засоренности

    • низкий напор горячей воды;
    • под кожухом скапливается и сыпется сажа;
    • после включения происходит быстрое отключение горелки;
    • плохой прогрев воды;

    Важно! Прежде чем начинать процесс очистки теплообменника необходимо убедиться, что исправны остальные элементы отопительной системы.

    Теплообменники для систем отопления

    Теплообменники для отопления предусмотрены для обмена теплом между двумя контурами с горячей и холодной водой. Они используются в системах отопления, где передают тепло теплоносителю благодаря более высокой температуре греющей среды.
    Незаменимость таких теплообменников проявляется в частных домах, где собственное отопление. После установки этих приборов подача от отопительной системы и теплосети становятся раздельными. По разные стороны к аппарату подключаются контур внутренней системы и труба с горячим теплоносителем. Теплообменный аппарат может подключаться как напрямую, так и параллельно.

    Пластинчатые теплообменники для систем отопления

    Наиболее популярны в блочных ТП независимого отопления пластинчатые теплообменники. В его основе лежит комплект пластин, перфорированных штамповкой, для расширения площади теплового обмена и создания каналов, по которым происходит движение воды. Пластины собраны в пакет, на последней неподвижной плите есть патрубки входа и выхода теплоносителя греющей и нагреваемой среды, в которые и выведены каналы из пластин.

    Конструкция теплообменника для отопления

    Теплообменник для отопления состоит из 2-ух стальных плит с патрубками, которые объединяются с помощью направляющих и винтовых шпилек. Гофрированные пластины и уплотнители стягиваются между плитами. Чтобы регулировать количество пластин, одна из пластин сделана подвижной.
    Место между прилегающими пластинами поочерёдно наполняется холодным и горячим теплоносителем, а непроницаемость системы обеспечивается уплотнителями. Малогабаритные размеры устройства гарантируют высокую эффективность, так как рельефная поверхность обеспечивает увеличение площади теплообмена.

    Преимущества и недостатки

    – лёгкость в установке;

    – небольшие габаритные размеры;

    – простота сервисного обслуживания;

    – возможность изменить отапливаемую площадь;

    – высокая эффективность с экономией энергии;

    – продолжительный период работы;

    – определённые лимиты при использовании по максимальному давлению и температуре;

    – необходимость рассчитывать каждое устройство персонально под заданные характеристики;

    – восприимчивость к качеству теплоносителя и присутствию примесей;

    Расчет теплообменника для отопления

    Каждая модель теплообменного аппарата собирается под определённые требования эксплуатации. На основе расчетов определяется материал, число пластин, технические характеристики, габариты. Расчет готовит фирма-производитель оборудования. Клиенту только нужно предоставить необходимые сведения:

    – температура в контуре теплосети;

    – температура внутреннего контура;

    – допустимый убыток напора;

    Чтобы узнать эти данные, можно сделать запрос в теплоснабжающую компанию. Тепловую мощность можно легко рассчитать, если известны другие характеристики. При подборе теплообменника следует принимать во внимание и другие характеристики, такие как вязкость и загрязнённость рабочей среды. Неверные расчеты могу основательно оказать влияние на срок службы, эффективность и цену оборудования.

    – Ошибочно учтены главные параметры. Ошибки в расчете, неточности указывании характеристик в заявке – это может привести к тому, что прибор чаще загрязняется и быстрей ломается

    – В весьма враждебной и загрязнённой среде материалы будут быстрее выходить из строя и засоряться, если они не подходят к теплоносителю.

    – При очень невысоком значении запаса площади на загрязнение устройство станет быстро покрываться накипью, при очень высоком – станет малоэффективным

    Остались вопросы?

    Вы всегда можете получить консультацию по подбору теплообменника на систему ГВС у нашего инженера совершенно бесплатно.

    Мы поможем определится какой именно вариант больше подходит для Вашего объекта, учитывая технические характеристики и пожелания.
    Обращайтесь по номеру 8-804-333-71-04 (звонок бесплатный), или же напишите на электронную почту [email protected]
    С наиболее полной информацией о теплообменном оборудовании Вы всегда можете ознакомиться на нашем сайте

    Что такое теплообменник в системе отопления?

    Мне очень часто приходиться слышать вопрос от клиентов — что такое теплообменник в системе отопления? Вопрос простой, на первый взгляд нелепый и все же справедливый. Ведь, казалось бы, любая система отопления прекрасно обходиться без теплообменника даже при производстве горячей воды.

    Вопрос о непосредственном отборе горячей воды из системы отопления сложен, поэтому давайте разберем его немного позже, в другой статье. А сейчас разберемся с вопросом, зачем в системе отопления стоит теплообменник?

    В каждой ли системе отопления есть теплообменник.

    Скажу сразу, теплообменник стоит не в каждой системе отопления, и даже более, в нашей стране это редкость. А вот в остальном мире повсеместно. Там все устроено по-другому, котельные работают без персонала, температура на выходе одна, максимально необходимая для обеспечения теплом в самые лютые, по их меркам морозы. Каждый потребитель берет тепла столько, сколько считает нужным, то количество тепла за которое он готов или в состоянии оплатить.

    В отопительном контуре в качестве теплоносителя может использоваться не только вода (хотя чаще всего все-таки умягченная с помощью комплексонов и омагниченная вода), это может быть антифриз, масло или другая жидкость, но даже если вода ни кто и не подумает брать воду прямо из системы отопления, эту ему обойдется очень дорого. Вот здесь и приходит на выручку теплообменник, который устанавливается в систему отопления и разделяет ее на две части, систему отопления от поставщика к потребителю и систему отопления самого потребителя.

    После теплообменника установленного в системе отопления потребитель ставит множество регуляторов, некоторое подобие нашей системы погодного регулирования, которые следят за температурой в различных комнатах, в системе подачи горячей воды, теплого пола, рекуперации и т.д.


    Схема ИТП при независимом присоединении к тепловой сети через теплообменник.

    У нас в стране такая система отопления называется независимой, на ней построено большинство блочных тепловых пунктов и основное ее назначение несколько другое, кроме погодного регулирования теплообменник в системе отопления предотвращает выход из строя современных пластиковых труб, которые повсеместно успешно внедряются в современных отопительных системах.

    Такие трубы выдерживают максимальную температуру до 90 градусов С, при этом максимальный срок труб из PPRS материалов (а правильно их называют именно так) при такой температуре составляет не более 5 месяцев. Как видите не много, хорошо, что и сильные морозы у нас так долго не держатся.

    Надеюсь теперь Вам понятно, что такое теплообменник в системе отопления.

    Теперь для любознательных, какой теплообменник чаще всего применяется в независимой системе отопления и как он выглядит.

    Чаще всего в блочных тепловых пунктах, построенных по схемам независимого отопления, применяются пластинчатые теплообменники. Устройство теплообменников очень хорошо описано на этом сайте, а вкратце смотрите на рисунке ниже.

    Устройство пластинчатого разборного теплообменника.

    В основе любого пластинчатого теплообменника лежит набор пластин, перфорированных особым способом штамповкой, для увеличения площади теплообмена и формирования каналов по которым движется вода. Пластины собраны в пакет, на торцевой неподвижной плите имеются патрубки для ввода и вывода теплоносителя греющей и нагреваемой среды, в которые и выведены каналы из пластин.

    Где устанавливать такой теплообменник в системе отопления или горячего водоснабжения роли не имеет, отличаются только сами схемы блочных тепловых пунктов и мощность, на которую рассчитаны пластинчатые теплообменники. А подобрать и изготовить пластинчатый теплообменник очень легко, как и потом увеличить или уменьшить его мощность, если конечно ваш теплообменник разборный, а не паяный.

    Если кому недостаточно сведений об устройстве пластинчатого теплообменника или блочного теплового пункта, есть необходимость в его подборе или расчете, проектировании рекомендую очень толковый сайт http://ridan-ug.ru/ поставщика теплообменного оборудования Ридан.

    А тему сегодняшней статьи — что такое теплообменник в системе отопления можно считать исчерпанной. Есть у Вас есть вопросы по работе теплообменного оборудования задавайте, с удовольствием отвечу, Юрий Олегович Парамонов, ООО Энергостром, 2016 год.

    В каких случаях нужен теплообменник для систем отопления

    Особенности подключения к системе горячего водоснабжения

    Если для сушилки полотенец используется отдельный отвод (последовательное подключение к системе горячего водоснабжения), а вода из него выводится через источники внутри квартиры, то установка полотенцесушителя на горячую воду проводится без дополнительных работ. Но при таком подключении сушки для полотенец снижается температура горячей воды. Его обычно используют в небольших домах.

    Цены на сушилки разного типа в магазине

    Чаще устройство подключается к водопроводу, заменяя часть стояка, такое можно увидеть в ванной в панельном доме. При установке полотенцесушителя на стояк горячего водоснабжения необходима дополнительная страховка в виде байпаса.

    Пластинчатые теплообменники области применения

    Пластинчатые теплообменники применяются в системе отопления дома, горячего водоснабжения, в системах кондиционирования в больших коттеджах, школах, садах, бассейнах, в целых микрорайонах, а также в системе отопления домов сельской местности. Широкое применение пластинчатые теплообменники нашли в пищевой промышленности.

    Теплообменники для отопления имеют ряд неоспоримых преимуществ по сравнению с остальными устройствами, используемыми для создания подходящего микроклимата.

    Подобные отопительные приборы обладают рядом преимуществ над другими видами.

    Положительные качества

    Среди основных положительных качеств устройства, обеспечивающего отопление, можно отметить следующие:

    • высокий уровень компактности;
    • пластинчатые теплообменники имеют высокий коэффициент теплопередачи;
    • коэффициент тепловых потерь максимально низкий;
    • потери давления находятся на минимальном уровне;
    • выполнение монтажно-наладочных, ремонтных и изоляционных работ требует низких финансовых затрат;
    • при возможном засорении это устройство может быть разобрано, очищено и собрано обратно всего двумя рабочими уже через 4-6 часов;
    • имеется возможность добавить мощность пластинам.

    Кроме того, благодаря своей простоте подключение теплообменника к системе отопления может быть осуществлено просто на полу в тепловом пункте или на обычной несущей конструкции блочного теплового пункта. Отдельно стоит отметить низкий уровень загрязняемости поверхности теплообменника, что вызвано высокой турбулентностью потока жидкости, а также благодаря качественной полировке используемых теплообменных пластин. На сегодняшний срок эксплуатации уплотнительной прокладки у ведущих европейских производителей составляет не менее 10 лет. Срок же службы пластин составляет 20-25 лет. Стоимость замены уплотнительной прокладки может составлять 15-25% от общей стоимости всего агрегата.

    Очень важно, что после проведения детального расчета конструкцию современного пластинчатого теплообменника можно изменить под необходимые и указанные в техническом задании характеристики (вариативность конструкции и изменяемость задачи). Абсолютно все пластинчатые теплообменники устойчивы к высокому уровню вибрации

    У современных аппаратов системы отопления последствия возможных гидроударов сведены практически к нулю.

    Из чего состоит современный теплообменник

    Теплообменник современного типа состоит из нескольких частей, каждая из которых играет свою важную роль:

    • неподвижной плиты, к которой присоединяются все подводимые патрубки;
    • прижимной плиты;
    • теплообменных пластин со вставленными прокладками уплотнительного типа;
    • верхней и нижней направляющих;
    • задней стойки;
    • шпилек с резьбой.

    На данном изображении представлен кожухотрубный теплообменник.

    Благодаря такой уникальной конструкции теплообменник способен обеспечивать наиболее эффективную компоновку всей поверхности используемого теплообменника, что дает возможность создавать небольшой по габаритам аппарат отопления. Абсолютно все пластины в собранном пакете одинаковы, только часть из них развернута к другой под углом в 180 градусов. Именно поэтому во время необходимого стягивания всего пакета должны образовываться каналы. Именно через них во время процесса нагрева и протекает рабочая жидкость, принимающая участие в теплообмене. Благодаря такой компоновке элементов системы достигается правильное чередование каналов.

    На сегодняшний день можно смело утверждать, что теплообменники пластинчатого типа из-за своих технических характеристик являются более популярными. Ключевой элемент любого современного теплообменника — это теплопередающие пластины, которые изготавливаются из стали, не подверженной коррозии, толщина пластин находится в диапазоне от 0,4 до 1 мм. Для изготовления используется высокотехнологичный метод штамповки.

    Во время работы пластины прижимаются друг к другу, образуя тем самым щелевые каналы. Лицевая сторона каждой из таких пластин имеет специальные канавки, куда специально устанавливается резиновая контурная прокладка, которая обеспечивает полную герметичность каналов. Всего имеется четыре отверстия, два из них необходимы для обеспечения подвода и отвода нагреваемой среды к каналу, а два другие отвечают за предотвращение случаев перемешивания греющей и нагреваемой сред. На случай прорыва одного из малых контуров пластинчатые теплообменники защищены дренажными пазами.

    Если имеет место большая разница в расходе сред и совсем небольшое отличие в конечных температурах, то есть возможность многократно использовать теплообменный процесс, который будет происходить через петлеобразное направление потоков.

    Двухступенчатая последовательная схема.

    Сетевая
    вода разветвляется на два потока: один
    проходит через регулятор расхода РР, а
    второй через подогреватель второй
    ступени, затем эти потоки смешиваются
    и поступают в систему отопления.

    При
    максимальной температуре обратной воды
    после отопления 70ºС
    и
    средней нагрузке горячего водоснабжения
    водопроводная вода практически
    догревается до нормы в первой ступени,
    и вторая ступень полностью разгружается,
    т.к. регулятор температуры РТ закрывает
    клапан на подогреватель, и вся сетевая
    вода поступает через регулятор расхода
    РР в систему отопления, и система
    отопления получает теплоты больше
    расчетного значения.

    Если
    обратная вода имеет после системы
    отопления температуру 30-40ºС
    , например, при плюсовой температуре
    наружного воздуха, то подогрева воды в
    первой ступени недостаточно, и она
    догревается во второй ступени. Другой
    особенностью схемы является принцип
    связанного регулирования. Сущность его
    состоит в настройке регулятора расхода
    на поддержание постоянного расхода
    сетевой воды на абонентский ввод в
    целом, независимо от нагрузки горячего
    водоснабжения и положения регулятора
    температуры. Если нагрузка на горячее
    водоснабжение возрастает, то регулятор
    температуры открывается и пропускает
    через подогреватель больше сетевой
    воды или всю сетевую воду, при этом
    уменьшается расход воды через регулятор
    расхода, в результате температура
    сетевой воды на входе в элеватор
    уменьшается, хотя расход теплоносителя
    остается постоянным. Теплота, недоданная
    в период большой нагрузки горячего
    водоснабжения, компенсируется в периоды
    малой нагрузки, когда в элеватор поступает
    поток повышенной температуры. Снижение
    температуры воздуха в помещениях не
    происходит, т.к. используется
    теплоаккумулирующая способность
    ограждающих конструкций зданий. Это и
    называется связанным регулированием,
    которое служит для выравнивания суточной
    неравномерности нагрузки горячего
    водоснабжения. В летний период, когда
    отопление отключено, подогреватели
    включаются в работу последовательно с
    помощью специальной перемычки. Эта
    схема применяется в жилых, общественных
    и промышленных зданиях при соотношении
    нагрузок
    Выбор схемы зависит от графика центрального
    регулирования отпуска теплоты: повышенный
    или отопительный.

    Преимуществом
    последовательной
    схемы по сравнению с двухступенчатой
    смешанной является выравнивание
    суточного графика тепловой нагрузки,
    лучшее использование теплоносителя,
    что приводит к уменьшению расхода воды
    в сети. Возврат сетевой воды с низкой
    температурой улучшает эффект теплофикации,
    т.к. для подогрева воды можно использовать
    отборы пара пониженного давления.
    Сокращение расхода сетевой воды по этой
    схеме составляет (на тепловой пункт)
    40% по сравнению с параллельной и 25% — по
    сравнению со смешанной.

    Недостаток
    – отсутствие возможности полного
    автоматического регулирования теплового
    пункта.

    Зависимая схема с трёхходовым клапаном и циркуляционными насосами

    Зависимая схема подключения теплового пункта системы отопления к источнику тепла с трёхходовым клапаном регулятора теплового потока и циркуляционно-смесительными насосами в подающем трубопроводе системы отопления.

    Данную схему в ИТП применяют при соблюдении условий:

    1 Температурный график работы источника тепла (котельной) превышает либо равен температурному графику системы отопления. Тепловой пункт подключённый по данной принципиальной схеме может работать как с подмесом к подаче потока из обратного трубопровода, так и без него, то есть пустить теплоноситель из подающего трубопровода тепловой сети напрямую в систему отопления.

    Например расчётный температурный график системы отопления 90/70°C, равен температурному графику источника, но источник независимо от внешних факторов всё время работает с температурой на выходе 90°C, а для системы отопления подавать теплоноситель с температурой в 90°C нужно лишь при расчётной температуре наружного воздуха (для Киева -22°C). Таким образом в тепловом пункте к воде, поступающей от источника будет подмешиваться остывший теплоноситель из обратного трубопровода пока температура наружного воздуха не опустится до расчётного значения.

    2 Подключение теплового пункта выполнено к безнапорному коллектору, гидравлической стрелке или теплотрассе с разницей давлений между подающим и обратным трубопроводом не более 3м.вод.ст..

    3 Давление в обратном трубопроводе источника тепла в статическом и динамическом режимах превышает как минимум на 5м.вод.ст высоту от места подключения теплового пункта до верхней точки системы отопления (статику здания).

    4 Давление в подающем и обратном трубопроводе источника тепла, а также статическое давление в тепловых сетях не превышают максимально допустимого давления для системы отопления здания подключённой к данному ИТП.

    5 Схема подключения теплового пункта должна обеспечивать автоматическое качественное регулирование системой отопления по температурному или временному графику.

    Описание работы схемы ИТП с трёхходовым клапаном

    Принцип работы данной схемы схож с работой первой схемы за исключением того, что трёхходовым клапаном может быть полностью перекрыт отбор из обратного трубопровода, при котором весь теплоноситель, поступающий от источника тепла без подмеса будет подан в систему отопления.

    В случае полного перекрытия подающего трубопровода источника тепла, как и в первой схеме, в систему отопления будет подаваться только вышедший из неё теплоноситель, отбираемый из обрата.

    Зависимая схема с трёхходовым клапаном, циркуляционными насосами и регулятором перепада давления.

    Применяется при перепаде давления в месте подключения ИТП к тепловой сети превышающем 3м.вод.ст.. Регулятор перепада давления в данном случае подбирается для дросселирования и стабилизации располагаемого напора на вводе.

    Теплообменник для системы отопления: основные виды и производители

    Теплообменник – это главный элемент отопительной системы. Его основная роль заключается в передаче тепловой энергии от генератора к теплоносителю.

    С учетом конструктивных элементов они могут изготовляться различных видов, благодаря чему каждый хозяин сможет выбрать подходящий вариант для своей отопительной системы.

    Для чего необходим теплообменник?

    В домашних системах отопления чаще всего можно встретить поверхностные теплообменники. В
    них передача тепла происходит через поверхности металлических стенок этого аппарата.

    • Максимальная реализация отопления через представленный аппарат наблюдается в конструкции котлов, работающих на газе, твердом топливе и электричестве.
    • Циркуляция теплоносителя происходит по трубам, изогнутым в форме змеевика. Они расположены внутри котельного агрегата, а нагрев теплоносителя осуществляется от температуры горящего топлива.
    • Горячая вода направляется в трубопровод системы отопления, а заменяет ее в теплообменнике остывший носитель тепла из радиаторов.

    Решили самостоятельно смонтировать водопровод из полипропилена? Наша статья — Сварка полипропиленовых труб: инструкция, поможет быстро во всем разобрать и выбрать необходимый инструмент.

    О том, как работать с металлопластиковыми трубами, вы узнаете здесь

    Даже сегодня во многих домах присутствует традиционный источник тепловой энергии – печь. Ее целесообразно использовать для дома небольшой площади. Если речь идет о многокомнатном коттедже, то ее тепловой мощности будет недостаточно.
    По этой причине в частных домах отопительная система не может нормально функционировать без этого элемента. Именно благодаря ему удается превратить печь в полноценный водонагревательный котел.

    Виды теплообменников

    Теплообменные агрегаты могут быть различных типов. Их отличие заключается в способе передачи тепловой энергии. Выделяют следующие виды представленных аппаратов:

    1. Смесительные. В них передача тепловой энергии осуществляется благодаря смешению двух рабочих сред. По конструкции эти устройства намного проще, чем поверхностные. Использовать такие агрегаты получается только при условии возможности смешивания носителей тепла. Это условие и служит главным недостатком смесительных приборов.
    2. Поверхностные. В них осуществляется обмен энергией между рабочими
      носителями тепла посредством стенок разделителя
      .
      Такие устройства подразделяются на рекуперативные и регенеративные.
      В рекуперативных при передаче тепловой энергии через разделительную стенку поток тепла движется в одном направлении в каждой точке стенки.
      Для регенеративного теплообменного аппарата свойственно то, что носитель тепла при попеременном касании одной и той же поверхности, время от времени изменяет направление потока.

    Типы рекуперативных теплообменников

    Большим спросом на сегодня пользуются рекуперативные теплообменные устройства. Соглас
    но конструкционному исполнению выделяют следующие виды представленных агрегатов:

    Кожухотрубный

    Это устройство, представляющее собой пучки труб, приваренные к кожуху и прикрепленные к трубным решеткам при помощи болтов.
    Движение первого носителя тепла в межтрубном пространстве осуществляется через присутствующие на корпусе штуцера. Другой теплоноситель течет по трубам. На корпусе или крышке представленных устройств присутствуют перегородки.
    В целях повышения отдачи тепла трубы подвергают процессу оребрения методом накатки или навивки ленты.

    Погруженный

    Его конструкция предполагает погружение одного теплоносителя в емкость с другим. Такие устройства характеризуются дешевизной и простотой.

    Теплообменные устройства типа «труба в трубе»

    Состоит из нескольких звеньев, расположенных друг над другом и соединенных между собой. Каждое звено представляет собой конструкцию из вставленных друг в друга труб, между которыми и происходит теплообмен.
    Их целесообразно эксплуатировать при высоких показателях давления и небольших расходах воды в системе.

    Выбираете алюминиевые радиаторы для дома? Узнайте подробнее о технических характеристиках алюминиевых радиаторов отопления.

    Как выбрать тепловой насос вы можете узнать тут

    Оросительный

    Состоит из нескольких рядов труб, расположенных одна над другой, по наружной поверхности которых тонкой пленкой стекает охлаждающая их вода

    Его активно применяют в холодильных установках, так как они выступают в роли конденсаторов.

    Графитовый

    Конструкция теплообменного устройства предполагает наличие блоков из графита, уплотненных между собой при помощи прокладок из резины и
    зафиксированных крышками
    .
    Графит считается прекрасным проводником тепловой энергии. Для устранения пористости происходит его обработка специальными составами.

    Пластинчатый

    Это устройство изготовлено из пластин, поверхность которых отштампована специальным методом. Результатом такой работы становится образование каналов, по которым движется теплоноситель. Между собой пластины уплотнены.
    Процесс изготовления такого устройства отличается своей простотой, его легко чистить, он обладает высокой теплоотдачей. Минус – не выдерживает высокое давление.

    Пластинчато-ребристый

    Состоит из системы разделительных пластин, между которыми находятся ребристые поверхности — насадки, присоединенные к пластинам методом пайки в вакууме.

    Предназначены для теплообмена между неагрессивными жидкими и газообразными средами в интервале температур от плюс 200 °C до минус 270 °C.

    Обладает малым весом и размерами, высокой прочностью и жесткостью.

    Оребренно-пластинчатый

    Его конструкция предполагает наличие оребренных панелей маленькой толщины, производство которых происходит при помощи высокочастотной сварки.
    Благодаря такой конструкции и применяемым материалам удается достичь высокого температурного режима теплоносителя, малого гидравлического давления, высокого КПД, продолжительного срока эксплуатации, низкой стоимости.

    Спиральный

    Оснащен двумя каналами, которые навиты в форме спирали около основной разделительной перегородки. Их цель – нагрев и охлаждения жидкостей, обладающих высоким показателем вязкости.

    Устройство и принцип работы

    Современные модели теплообменного устройства имеют несколько частей. Для каждой характерна своя важная роль:

    • неподвижная плита – к ней крепят все подводимые патрубки;
    • прижимная плита;
    • пластины, оснащенные вставленными прокладками уплотнительного типа;
    • верхняя и нижняя направляющие;
    • задняя стойка;
    • шпильки с резьбой.

    Популярные производители

    На современном рынке эта продукция представлена в широком ассортименте. Существуют многочисленные модели и производители. Основные критерии выбора:

    • надежность и качество;
    • ремонтопригодность;
    • цена;
    • гарантии;
    • запасные детали.

    Смотрите видео о том, как сделать теплообменник своими руками

    Рассмотрим подробнее, кто входит в рейтинг лучших изготовителей системы, и цены на них:

    1. Кролл. Производимые модели теплообменников – серии S, SKE, H, SL, NKA, NK, A. Стоимость от 200000 до 700000 рублей.
    2. Дракон-энергия. Модели теплообменных устройств: Др 30, Др 50, Др 100, Др 150, Др 200, Др 500, Др 1000. Цена от 60000 до 400000 рублей.
    3. SWEP – производит теплообменники серии GX, GC, GL, GD, GF, GW. Стоимость от 45000 до 600000 рублей.
    4. Ридан. Производит модели теплообменных устройств серии НН. Цена от 40000 до 800000 рублей.

    Теплообменное устройство— это «сердце» любой отопительной системы. Только при его наличии можно получить качественный обогрев дома. Благодаря широкому разнообразию этого отопительного аппарата, очень просто подобрать подходящий для своей системы.

    Для чего нужен теплообменник в системе отопления

    Теплообменник устройство, передающее тепло от одного источника теплоты другому, исключая при этом непосредственный контакт теплоносителей. Поэтому теоретически теплообменник можно установить в любой системе отопления, главное чтобы от этого была польза , поскольку стоимость самой системы отопления при этом возрастает прямо пропорционально нагрузке, или попросту стоимости самого устанавливаемого теплообменника с регулирующей измерительной и контрольной аппаратурой.

    Главная область применения теплообменников в системе отопления это независимая система теплоснабжения. Чтобы понять, зачем нам это нужно необходимо совершить небольшой экскурс в природу имеющихся у нас в стране тепловых сетей.

    Зависимая система теплоснабжения, работающая без теплообменника.

    Индивидуальный тепловой пункт, спроектированный для работы в зависимой системе теплоснабжения без теплообменника

    Существуют две схемы отопления или как правильно говорить теплоснабжения. Зависимая система отопления, с которой мы все хорошее знакомы, это когда котел, нагревая воду, подает ее по трубопроводам прямо в отопительные приборы – батареи отопления в квартире, минуя теплообменник. Конечно, в такой схеме есть тепловой пункт, регулирующие и измерительные приборы, иногда устанавливается погодозависимая автоматика. Только без теплообменника влиять на температуру в батареях, а значит, в целом в квартирах мы можем только в сторону уменьшения температуры.

    Для котлов в котельной такая схема тоже не удобная, она требует больших насосов, котлы и трубы тепловой сети работают как гармошка, от того рвутся постоянно, а об утечках тепла и потерянных при этом потерях тепла лучше и не вспоминать. Зато на первичном этапе без установки теплообменника в системе отопления получается довольно дешево, но не эффективно, котельная не знает, сколько тепла нужно каждому, а потребитель не в силах влиять на выработку тепла для отопления, отсюда перетоп и низкая энергетическая эффективность такой системы отопления без разделительного теплообменника.

    Независимая система теплоснабжения с теплообменником.

    Индивидуальный тепловой пункт, спроектированный для работы в независимой системе теплоснабжения с теплообменником

    Теплообменник в такой системе отопления главный прибор позволяющий экономить. Конечно, экономит не он, он только отделяет среды друг от друга, экономит автоматика. Как экономит? Вот пример независимой системы отопления – современная централизованная отопительная система, в ней имеется один главный тепловой пункт, распределяющий тепло и дополнительные теплообменники для каждого потребителя установленные уже в ИТП жилых домов.

    От котельной к центральному тепловому пункту, где установлен главный теплообменник, тепло подается в жестком, фиксированном тепловом режиме – например 95 градусов на подаче и теоретически 70 градусов на обратке. В котельной не нужна автоматика и операторы, мощность насосов и диаметр труб тепловой сети могут быть гораздо меньше, утечек в контуре котлов нет по своей природе. Иногда теплообменник большой мощности устанавливают непосредственно в системе отопления котельной, тогда контур получается двойным и в котлах, из-за малого объема теплоносителя во внутреннем контуре, отсутствует накипь, котлы служат вечно.

    Блочный тепловой пункт, спроектированный для работы в независимой системе теплоснабжения и горячего водоснабжения с теплообменниками

    Установив теплообменник в системе отопления, потребитель получает возможность влиять на температуру в квартире, сколько нужно каждому столько и возьмет, конечно, если в квартире на батареях тоже установлены регулирующие приборы. Выгода для всех налицо.

    Как подключить теплый пол к системе отопления через теплообменник.

    Нужен теплообменник и для теплого пола. Если вы, например, захотите сделать теплый пол, врезав его в систему отопления без теплообменника вы оставите весь дом без тепла, тепла на полы пойдет немного, но вот вода – теплоноситель будет циркулировать только через ваш пол и не пойдет к соседям, она «лентяй» и идет по самому короткому пути.

    Недостаток установки теплообменника в систему отопления только один, увеличение затрат на первоначальном этапе монтажа, но он с лихвой перекрывается всеми ее достоинствами.

    Зависимую систему отопления легко модернизировать в независимую систему, путем установки дополнительного теплообменника с регулирующей аппаратурой. Правда, делать это придется одновременно во всем районе, подключенном к вашей котельной. Зато так вы сможете сэкономить до 40 процентов на оплату тепла, по сравнению с вашими сегодняшними затратами без установки такого нужного теплообменника в системе отопления.

    Ссылка на основную публикацию