Таблица шевелева онлайн калькулятор

Пропускная способность трубопровода.

Такая характеристика как пропускная способность трубопровода зависит от нескольких факторов. Прежде всего, это диаметр трубы, а также тип жидкости, и другие показатели.

Для гидравлического расчета трубопровода вы можете воспользоваться калькулятором гидравлического расчета трубопровода.

При расчете любых систем, основанных на циркуляции жидкости по трубам, возникает необходимость точного определения пропускной способности труб. Это метрическая величина, которая характеризует количество жидкости, протекающее по трубам за определенный промежуток времени. Данный показатель напрямую связан с материалом, из которого изготовлены трубы.

Если взять, к примеру, трубы из пластика, то они отличаются практически одинаковой пропускной способностью на протяжении всего срока эксплуатации. Пластик, в отличие от металла, не склонен к возникновению коррозии, поэтому постепенного нарастания отложений в нем не наблюдается.

Что касается труб из металла, то их пропускная способность уменьшается год за годом. Из-за появления ржавчины происходит отслойка материала внутри труб. Это приводит к шероховатости поверхности и образованию еще большего налета. Особенно быстро этот процесс происходит в трубах с горячей водой.

Далее приведена таблица приближенных значений которая создана для облегчения определения пропускной способности труб внутриквартирной разводки. В данной таблице не учтено уменьшение пропускной способности за счет появления осадочных наростов внутри трубы.

Таблица пропускной способности труб для жидкостей, газа, водяного пара.

Вид жидкости

Скорость (м/сек)

Вода городского водопровода

Вода трубопроводной магистрали

Вода системы центрального отопления

Вода напорной системы в линии трубопровода

Масло линии трубопровода

Масло в напорной системе линии трубопровода

Пар в отопительной системе

Пар системы центрального трубопровода

Пар в отопительной системе с высокой температурой

Воздух и газ в центральной системе трубопровода

Чаще всего, в качестве теплоносителя используется обычная вода. От ее качества зависит скорость уменьшения пропускной способности в трубах. Чем выше качество теплоносителя, тем дольше прослужит трубопровод из любого материала (сталь чугун, медь или пластик).

Расчет пропускной способности труб.

Для точных и профессиональных расчетов необходимо использовать следующие показатели:

  • Материал, из которого изготовлены трубы и другие элементы системы;
  • Длина трубопровода
  • Количество точек водопотребления (для системы подачи воды)

Наиболее популярные способы расчета:

1. Формула. Достаточно сложная формула, которая понятна лишь профессионалам, учитывает сразу несколько значений. Основные параметры, которые принимаются во внимание – материал труб (шероховатость поверхности) и их уклон.

2. Таблица. Это более простой способ, по которому каждый желающий может определить пропускную способность трубопровода. Примером может послужить инженерная таблица Ф. Шевелева, по которой можно узнать пропускную способность, исходя из материала трубы.

3. Компьютерная программа. Одну из таких программ легко можно найти и скачать в сети Интернет. Она разработана специально для того, чтоб определить пропускную способность для труб любого контура. Для того что узнать значение, необходимо ввести в программу исходные данные, такие как материал, длина труб, качество теплоносителя и т.д.

Следует сказать, что последний способ, хоть и является самым точным, не подходит для расчетов простых бытовых систем. Он достаточно сложен, и требует знания значений самых различных показателей. Для расчета простой системы в частном доме лучше воспользоваться таблицами.

Пример расчета пропускной способности трубопровода.

Длина трубопровода – важный показатель при расчете пропускной способности Протяженность магистрали оказывает существенное влияние на показатели пропускной способности. Чем большее расстояние проходит вода, тем меньшее давление она создает в трубах, а значит, скорость потока уменьшается.

Приводим несколько примеров. Опираясь на таблицы, разработанные инженерами для этих целей.

Пропускная способность труб:

  • 0,182 т/ч при диаметре 15 мм
  • 0,65 т/ч с диаметром трубы 25 мм
  • 4 т/ч при диаметре 50 мм

Как можно увидеть из приведенных примеров, больший диаметр увеличивает скорость потока. Если диаметр увеличить в 2 раза, то пропускная способность тоже возрастет. Эту зависимость обязательно учитывают при монтаже любой жидкостной системы, будь то водопровод, водоотведение или теплоснабжение. Особенно это касается отопительных систем, так как в большинстве случаев они являются замкнутыми, и от равномерной циркуляции жидкости зависит теплоснабжение в здании.

Расчет пропускной способности трубопровода по диаметру и давлению

Пропускная способность трубы в гидравлике — объем или масса проходящего за единицу времени вещества через ее сечение. Этот показатель является важнейшим при расчете и проектировании трубопроводов, транспортирующих различные жидкости и газы. Правильно подобранные параметры позволяют системе функционировать без перегрузок, а также снизить расходы, связанные с ее устройством или модернизацией.

Для чего определяется пропускная способность?

При расчете водопровода стоит задача определить оптимальный диаметр трубы для обеспечения нормативного потребления воды.

Если сечение слишком мало, это приводит к недостаточному напору в трубах даже при большом давлении, в результате:

  • насосное оборудование быстрее изнашивается,
  • чаще происходят аварии на линии,
  • увеличивается расход энергии.

Для ремонта систем требуются дополнительные траты, что повышает стоимость эксплуатации.

В гидравлике пропускная способность всей системы рассчитывается по самому узкому месту. Часто трубопроводы сравнивают с электропроводкой, только по трубам бежит вода, а по проводам — электрический ток.

С чего начать?

Отправная точка для расчета системы — определение нормативного расхода воды в зависимости от количества приборов и одновременно включаемых водоразборных точек. Базовые данные указаны в СНиП 2.04.01-85*, для потребляющего воду оборудования технические характеристики можно узнать из паспорта и суммировать с нормативными.

Зная, сколько потребуется воды на различные нужды, подбираются все элементы системы:

Методы определения пропускной способности

Расчеты ведутся различными методами:

  • По формулам гидравлики. Это достаточно сложный способ, требующий теоретических знаний.
  • По готовым таблицам. Необходимые параметры уже просчитаны и занесены в удобную для пользователей форму.
  • С помощью онлайн калькулятора. Доступный и быстрый способ найти нужные характеристики. Достаточно записать свои данные в окнах программы, и результат будет готов почти мгновенно.

В гидравлике пропускная способность всей системы рассчитывается по самому узкому месту.

Закон Торричелли

В формуле итальянского математика и физика Торричелли используется закон сохранения энергии для идеальных жидкостей и газов.

Ученый получил соотношение, связывающее скорость молекулы и высоту столба жидкости (напор):

U=√2gH, где U— скорость движения молекулы вещества, g— ускорение свободного падения, H — напор.

Зная скорость жидкости и нормативный расход, можно определить необходимую площадь S сечения трубы:

S=Q /V, где Q — расход, определенный по СНиП 2.04.01-85*.

Площадь круга связана с диаметром соотношениемS=pD²/4, откуда:

D=2√(S/p)=2√(Q/(Up)), где p — 3,14.

Таблица пропускной способности труб для жидкостей, газа, водяного пара

Гораздо проще и быстрее использовать таблицы определения пропускной способности трубы в зависимости от диаметра и давления воды, газа, водяного пара. Они содержат уже готовую информацию в очень доступном виде:

Например, нужно определить пропускную способность трубы Æ20 мм при давлении 3 бар (0,3 МПа или 3 атм.). В левом столбце находим 3 бар, на самой верхней строчке указаны диаметры. При пересечении своих данных получаем значение искомого параметра для воды — 9,93 м³/ч.

Если по расчетам нормативного расхода этого достаточно, труба сечением 20 мм полностью удовлетворяет условиям. Если требуется большая проходимость, нужно найти значение для диаметра 32 мм и т.д., пока не будет найден наиболее близкий показатель.

Таблица пропускной способности трубы в зависимости от диаметра (по Шевелеву)

Таблицы Шевелева — советского ученого в области гидравлики — были разработаны для стальных, чугунных (новых и неновых), асбестоцементных, железобетонных, пластиковых и стеклянных труб. В расчетах учитывались шероховатость различных материалов, вязкость жидкости, трение и даже возраст труб, поскольку через несколько лет эксплуатации коммуникаций наблюдается выпадение осадка и уменьшение внутреннего диаметра.

Таблица пропускной способности труб в зависимости от давления теплоносителя

С увеличением давления растет и пропускная способность системы, но по нелинейному закону. По данной таблице можно найти показатели для различных значений напора труб самых востребованных диаметров:

В левой колонке указано давление, в строках — пропускная способность для разных сечений. Например, при диаметре трубы 20 мм и напоре 120 Па/1,2 бар максимальный расход воды через трубу по таблице составляет 472 кг (литра) в час. При этом скорость жидкости менее 15 м/с.

Таблица пропускной способности труб при разной температуре теплоносителя

При расчете тепловых системпропускная способность определяется в т/час или Гкал/час при различных температурных графиках с учетом удельной потери на трение. Для расчета используются рекомендации СП 60.13330.2012, СНиП 41-01-2003.

Например, труба с условным диаметром 50 мм при потере давления 5 кгс/м² обеспечивает проходимость 2,45 т/ч и 0,06 Гкал при температурах 95-70°С. Для температурных графиков 130-70 и 150-70 эти значения 0,15 Гкал и 0,2 Гкал соответственно.

При неизменном расходе теплоносителя с ростом температуры увеличивается количество выделяемой теплоты.

Таблицы пропускной способности напорных канализационных систем

Напорные сети организуются, если приборы расположены ниже уровня колодцев или коллекторов и требуется перекачка стоков на определенную высоту. Гидравлический расчет проводится по СП 31.13330.2012.

В отличие от безнапорных систем жидкость транспортируется полным сечением. В расчетах используются таблицы Шевелева для напорных трубопроводов и аналогичная методика. Объем стоков берется равным потреблению воды на водоснабжение.

Таблицы пропускной способности безнапорных труб канализации

В самотечных трубопроводах, устроенных с уклоном, стоки движутся благодаря силе тяжести. Сечение полностью не заполняется. При гидравлическом расчете используют таблицы Лукиных для безнапорной канализации.

Диаметр трубы определяется исходя из расчетного объема сточных вод, угла уклона и нормативного наполнения. Учитывается также материал для изготовления элементов.

Пример таблицы для пластиковой трубы сечением 40, 50 и 110 мм:

Для определения необходимого минимального диаметра задается расход стоков q, уклон i, наполнение h/D от 0,3 до 0,8 (в ливневой канализации допускается h/D=1). Например, нормативный расход 1,9 л/с, уклон 0,03, заполнение 0,3. Данным условиям удовлетворяет пластиковая труба Æ110 мм, скорость стекания 0,884 м/с, что соответствует нормативу.

Таблица пропускных способностей газовых труб в зависимости от давления

При выборе нужного оборудования для ГРС руководствуются прежде всего производительностью, зависящей от пропускной способности входных и выходных трубопроводов. Нормативы ограничивают скорость потока газа величиной 25м/с.

Для расчета применяется методика, описанная в Справочнике по проектированию магистральных водопроводов (ред. А.К. Дерцакян), а также таблица:

Пропускная способность определяется при заданном давлении (в левой колонке) и диаметре в вертикальных столбцах.

Методы расчета пропускной способности трубопроводов

Гидравлические расчеты проводятся с целью подбора элементов системы с оптимальными характеристиками для обеспечения бесперебойной работы, уменьшения эксплуатационных расходов и снижения износа оборудования.

Гидравлический расчет трубопровода

Расчеты ведутся с помощью таблиц Шевелева по следующему алгоритму:

  1. Задается нужный расход Q и оптимальная скорость среды на каждом участке.
  2. Подбирается диаметр трубы, определяются потери напора по длине.
  3. Процедура повторяется для всех участков.
  4. Находится удельное значение потери давления на 1 пог. м.
  5. Суммируются все остальные потери от всасывания, местного сопротивления и т.д. Полученное значение должно быть меньше или равно мощности насоса.
  6. Исходя из технических характеристик оборудования определяется расход Qнасоса.
  7. Сравниваются Q и Qнасоса. При приблизительном равенстве значений насос подобран правильно. Если нет, нужно задать новые параметры и посчитать заново.

Расчет пропускной способности канализационных труб

Задается диаметр и угол наклона, при котором сточные воды стекают произвольно, а система постоянно самоочищается (от 0,005 до 0,035 в зависимости от сечения):

Степень наполнения трубы по нормативу 0,6-0,8 и также зависит от диаметра:

По таблицам Лукиных уточняется, соответствует ли выбранный диаметр заданным параметрам. Если есть отклонения, сечение нужно изменить в большую/меньшую сторону. Для более точных расчетов используются графики, формулы и поправочные коэффициенты.

Расчет пропускной способности газопроводов

В соответствии с параметрами проектируемой сети задаются диаметры труб на входе и выходе в ГРС. Затем, сравнивая значения по таблицам, находят такое соотношение, при котором условия максимально соблюдены.

Читайте также:  Почему отключается газовый котел

Как рассчитать параметры дымохода

Главные характеристики, которые определяются в ходе расчетов, — длина трубы дымохода и ее рабочее сечение. При неправильном подборе параметров токсичные вещества не удаляются из камеры сгорания и проникают в помещение.

При проектировании используются нормативы СП 7.13130.2013 и СНиП III-Г.11-62. Хотя последний регламент считается недействующим, там содержатся рекомендации, касающиеся именно дымоходов.

Сложные промышленные устройства рассчитываются в профессиональных бюро, для домашних печей применяется более простая методика.

  • Задается скорость движения дыма U=2 м/с.
  • За час в топке сгорает примерно В=6 кг дров влажностью 20-25%.
  • Температура разогретого дыма T=140°.

Объем исходящего дыма определяется по формуле:

Vгаз = (В х Vтоплx (1+Т/273))/3600, м3/с , где Vтопл — объем воздуха, требуемый для сжигания 1 кг дров. В данном случае это 10 м³, для бурого угла 12 м³, для каменного 17 м³.

Зная объем исходящего газа и его скорость, можно найти площадь сечения трубы дымохода:

Диаметр определяется по геометрической формуле:

D=2√(S/p)=2√(0,0126/3,14)=0,126 м = 126 мм.

Ближайший диаметр трубы с округлением в большую сторону — 150 мм.

Главные характеристики, которые определяются в ходе расчетов, — длина трубы дымохода и ее рабочее сечение. При неправильном подборе параметров токсичные вещества не удаляются из камеры сгорания и проникают в помещение.

Длина дымохода для обеспечения нормальной тяги подбирается по СП 7.13130.2013, где нормируются высота от оголовка до колосниковой решетки печи, конька крыши, а также расстояние до окружающих крупных объектов.

Онлайн калькуляторы

Программы, помогающие определить параметры трубопровода, — большое подспорье для тех, кто мало знаком с гидравликой. Они созданы на базе действующих нормативов и теоретических формул.

Крупные объекты проектируются специализированными организациями, но для расчетов домашних сетей онлайн-калькуляторы могут применяться вполне уверенно. Если есть какие-либо сомнения, за консультацией лучше обратиться к профессионалам.

Заключение

Пропускная способность трубы — важнейшая характеристика, от которой зависит работа всего трубопровода. Для расчетов применяются различные методики с использованием формул, таблиц или программ. Если нет уверенности в собственных силах, обратитесь к специалистам.

Дополнительная информация по теме:

Самостоятельный гидравлический расчет трубопровода

Постановка задачи

Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя. Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.

Многолетний практический опыт эксплуатации систем трубопроводов показал, что трубы, имеющие круглое сечение, обладают определенными преимуществами перед трубопроводами, имеющими поперечное сечение любой другой геометрической формы:

  • минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
  • круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
  • форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
  • процесс изготовления труб круглой формы относительно простой и доступный.

Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.

Основными параметрами, характеризующими трубопровод являются:

  • условный (номинальный) диаметр – DN;
  • давление номинальное – PN;
  • рабочее допустимое (избыточное) давление;
  • материал трубопровода, линейное расширение, тепловое линейное расширение;
  • физико-химические свойства рабочей среды;
  • комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
  • изоляционные материалы трубопровода.

Условный диаметр (проход) трубопровода (DN) – это условная безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).

Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80.

Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода. Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.

Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.

Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.

Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.

Основные положения гидравлического расчета

Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.

Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний, по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:

Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:

  • ламинарный поток (Re 4000) – устойчивый режим, при котором в каждой отдельной точке потока происходит изменение его направления и скорости, что в итоге приводит к выравниванию скорости движения потока по объему трубы.

Критерий Рейнольдса зависит от напора, с которым насос перекачивает жидкость, вязкости носителя при рабочей температуре и геометрических размеров используемой трубы (d, длина). Данный критерий является параметром подобия для течения жидкости,поэтому, используя его, можно осуществлять моделирование реального технологического процесса в уменьшенном масштабе, что удобно при проведении испытаний и экспериментов.

Проводя расчеты и вычисления по уравнениям, часть заданных неизвестных величин можно взять из специальных справочных источников. Профессор, доктор технических наук Ф. А. Шевелев разработал ряд таблиц для проведения точного расчета пропускной способности трубы. Таблицы включают значения параметров, характеризующих как сам трубопровод (размеры, материалы), так и их взаимосвязь с физико-химическими свойствами носителя. Кроме того, в литературе приводится таблица приближенных значений скоростей движения потока жидкости, пара,газа в трубе различного сечения.

Подбор оптимального диаметра трубопровода

Определение оптимального диаметра трубопровода – это сложная производственная задача, решение которой зависит от совокупности различных взаимосвязанных условий (технико-экономические, характеристики рабочей среды и материала трубопровода, технологические параметры и т.д.). Например, повышение скорости перекачиваемого потока приводит к уменьшению диаметра трубы, обеспечивающей заданный условиями процесса расход носителя, что влечет за собой снижение затрат на материалы, удешевлению монтажа и ремонта магистрали и т.д. С другой стороны, повышение скорости потока приводит к потере напора, что требует дополнительных энергетических и финансовых затрат на перекачку заданного объема носителя.

Значение оптимального диаметра трубопровода рассчитывается по преобразованному уравнению неразрывности потока с учетом заданного расхода носителя:

При гидравлическом расчете расход перекачиваемой жидкости чаще всего задан условиями задачи. Значение скорости потока перекачиваемого носителя определяется, исходя из свойств заданной среды и соответствующих справочных данных (см. таблицу).

Преобразованное уравнение неразрывности потока для расчета рабочего диаметра трубы имеет вид:

Расчет падения напора и гидравлического сопротивления

Полные потери напора жидкости включают в себя потери на преодоление потоком всех препятствий: наличие насосов, дюкеров, вентилей, колен, отводов, перепадов уровня при течении потока по трубопроводу, расположенному под углом и т.д. Учитываются потери на местные сопротивления, обусловленные свойствами используемых материалов.

Другим важным фактором, влияющим на потери напора, является трение движущегося потока о стенки трубопровода, которое характеризуется коэффициентом гидравлического сопротивления.

Значение коэффициента гидравлического сопротивления λзависит от режима движения потока и шероховатости материала стенок трубопровода. Под шероховатостью понимают дефекты и неровности внутренней поверхности трубы. Она может быть абсолютной и относительной. Шероховатость различна по форме и неравномерна по площади поверхности трубы. Поэтому в расчетах используется понятие усредненной шероховатости с поправочным коэффициентом (k1). Данная характеристика для конкретного трубопровода зависит от материала, продолжительности его эксплуатации, наличия различных коррозионных дефектов и других причин. Рассмотренные выше величины являются справочными.

Количественная связь между коэффициентом трения, числом Рейнольдса и шероховатостью определяется диаграммой Муди.

Для вычисления коэффициента трения турбулентного движения потока также используется уравнение Коулбрука-Уайта, с использованием которого возможно наглядное построение графических зависимостей, по которым определяется коэффициент трения:

В расчётах используются и другие уравнения приблизительного расчета потерь напора на трение. Одним из наиболее удобных и часто используемых в этом случае считается формула Дарси-Вейсбаха. Потери напора на трение рассматриваются как функция скорости жидкости от сопротивления трубы движению жидкости, выражаемой через значение шероховатости поверхности стенок трубы:

Потери давления по причине трения для воды рассчитывают по формуле Хазена — Вильямса:

Расчет потерь давления

Рабочее давление в трубопроводе – это на большее избыточное давление, при котором обеспечивается заданный режим технологического процесса. Минимальное и максимальное значения давления, а также физико-химические свойства рабочей среды, являются определяющими параметрами при расчёте расстояния между насосами, перекачивающими носитель, и производственной мощности.

Расчет потерь на падение давления в трубопроводе осуществляют по уравнению:

Примеры задач гидравлического расчета трубопровода с решениями

Задача 1

В аппарат с давлением 2,2 бар по горизонтальному трубопроводу с эффективным диаметром 24 мм из открытого хранилища насосом перекачивается вода. Расстояние до аппарата составляет 32 м. Расход жидкости задан – 80 м 3 /час. Суммарный напор составляет 20 м. Принятый коэффициент трения равен 0,028.

Рассчитайте потери напора жидкости на местные сопротивления в данном трубопроводе.

Исходные данные:

Расход Q = 80 м 3 /час = 80·1/3600 = 0,022 м 3 /с;

эффективный диаметр d = 24 мм;

длина трубы l = 32 м;

коэффициент трения λ = 0,028;

давление в аппарате Р = 2,2 бар = 2,2·10 5 Па;

общий напор Н = 20 м.

Решение задачи:

Скорость потока движения воды в трубопроводе рассчитывается по видоизмененному уравнению:

w=(4·Q) / (π·d 2 ) = ((4·0,022) / (3,14·[0,024] 2 )) = 48,66 м/с

Потери напора жидкости в трубопроводе на трение определяются по уравнению:

HТ = (λ·l) / (d·[w 2 /(2·g)]) = (0,028·32) / (0,024·[48,66] 2 ) / (2·9,81) = 0,31 м

Общие потери напора носителя рассчитываются по уравнению и составляют:

Потери напора на местные сопротивления определяется как разность:

Ответ: потери напора воды на местные сопротивления составляют 7,45 м.

Задача 2

По горизонтальному трубопроводу центробежным насосом транспортируется вода. Поток в трубе движется со скоростью 2,0 м/с. Общий напор составляет 8 м.

Найти минимальную длину прямого трубопровода, в центре которого установлен один вентиль. Забор воды осуществляется из открытого хранилища. Из трубы вода самотеком изливается в другую емкость. Рабочий диаметр трубопровода равен 0,1 м. Относительная шероховатость принимается равной 4·10 -5 .

Исходные данные:

Скорость потока жидкости W = 2,0 м/с;

диаметр трубы d = 100 мм;

общий напор Н = 8 м;

относительная шероховатость 4·10 -5 .

Решение задачи:

Согласно справочным данным в трубе диаметром 0,1 м коэффициенты местных сопротивлений для вентиля и выхода из трубы составляют соответственно 4,1 и 1.

Значение скоростного напора определяется по соотношению:

w 2 /(2·g) = 2,0 2 /(2·9,81) = 0,204 м

Потери напора воды на местные сопротивления составят:

Суммарные потери напора носителя на сопротивление трению и местные сопротивления рассчитываются по уравнению общего напора для насоса (геометрическая высота Hг по условиям задачи равна 0):

Читайте также:  Нужен ли стабилизатор напряжения для газового котла

Полученное значение потери напора носителя на трение составят:

Рассчитаем значение числа Рейнольдса для заданных условий течения потока (динамическая вязкость воды принимается равной 1·10 -3 Па·с, плотность воды – 1000 кг/м 3 ):

Re = (w·d·ρ)/μ = (2,0·0,1·1000)/(1·10 -3 ) = 200000

Согласно рассчитанному значению Re, причем 2320 0,25 = 0,316/200000 0,25 = 0,015

Преобразуем уравнение и найдем требуемую длину трубопровода из расчетной формулы потерь напора на трение:

l = (Hоб·d) / (λ·[w 2 /(2g)]) = (6,96·0,1) / (0,016·0,204) = 213,235 м

Ответ:требуемая длина трубопровода составит 213,235 м.

Задача 3

В производстве транспортируют воду при рабочей температуре 40°С с производственным расходом Q = 18 м 3 /час. Длина прямого трубопровода l = 26 м, материал – сталь. Абсолютная шероховатость (ε) принимается для стали по справочным источникам и составляет 50 мкм. Какой будет диаметр стальной трубы, если перепад давления на данном участке не превысит Δp = 0,01 мПа (ΔH = 1,2 м по воде)? Коэффициент трения принимается равным 0,026.

Исходные данные:

Расход Q = 18 м 3 /час = 0,005 м 3 /с;

длина трубопровода l=26 м;

для воды ρ = 1000 кг/м 3 , μ = 653,3·10 -6 Па·с (при Т = 40°С);

шероховатость стальной трубыε = 50 мкм;

коэффициент трения λ = 0,026;

Решение задачи:

Используя форму уравнения неразрывности W=Q/F и уравнение площади потока F=(π·d²)/4 преобразуем выражение Дарси – Вейсбаха:

∆H = λ·l/d·W²/(2·g) = λ·l/d·Q²/(2·g·F²) = λ·[(l·Q²)/(2·d·g·[(π·d²)/4]²)] = =(8·l·Q²)/(g·π²)·λ/d 5 = (8·26·0.005²)/(9,81·3,14²)· λ/d 5 = 5,376·10 -5 ·λ/d 5

d 5 = (5,376·10 -5 ·λ)/∆H = (5,376·10 -5 ·0,026)/1,2 = 1,16·10 -6

d = 5 √1,16·10 -6 = 0,065 м.

Ответ: оптимальный диаметр трубопровода составляет 0,065 м.

Задача 4

Проектируются два трубопровода для транспортировки невязкой жидкости с предполагаемой производительностью Q1 = 18 м 3 /час и Q2 = 34 м 3 /час. Трубы для обоих трубопроводов должны быть одного диаметра.

Определите эффективный диаметр труб d, подходящих под условия данной задачи.

Исходные данные:

Решение задачи:

Определим возможный интервал оптимальных диаметров для проектируемых трубопроводов, воспользовавшись преобразованным видом уравнения расхода:

Значения оптимальной скорости потока найдем из справочных табличных данных. Для невязкой жидкости скорости потока составят 1,5 – 3,0 м/с.

Для первого трубопровода с расходом Q1 = 18 м 3 /час возможные диаметры составят:

d1min = √(4·18)/(3600·3,14·1,5) = 0,065 м

d1max = √(4·18)/(3600·3,14·3.0) = 0,046 м

Для трубопровода с расходом 18 м 3 /час подходят трубы с диаметром поперечного сечения от 0,046 до 0,065 м.

Аналогично определим возможные значения оптимального диаметра для второго трубопровода с расходом Q2 = 34 м 3 /час:

d2min = √(4·34)/(3600·3,14·1,5) = 0,090 м

d2max = √(4·34)/(3600·3,14·3) = 0,063 м

Для трубопровода с расходом 34 м 3 /час возможные оптимальные диаметром могут быть от 0,063 до 0,090 м.

Пересечение двух диапазонов оптимальных диаметров находится в интервале от 0,063 м до 0,065 м.

Ответ: для двух трубопроводов подходят трубы диаметром 0,063–0,065 м.

Задача 5

В трубопроводе диаметром 0,15 м при температуре Т = 40°C движется поток воды производительностью 100 м 3 /час. Определите режим течения потока воды в трубе.

диаметр трубы d = 0,25 м;

расход Q = 100 м 3 /час;

μ = 653,3·10 -6 Па·с (по таблице при Т = 40°С);

ρ = 992,2 кг/м 3 (по таблице при Т = 40°С).

Решение задачи:

Режим течения потока носителя определяется по значению числа Рейнольдса (Re). Для расчета Re определим скорость движения потока жидкости в трубе (W), используя уравнение расхода:

W = Q·4/(π·d²) = [100/3600] · [4/(3,14·0,25²)] = 0,57 м/c

Значение числа Рейнольдса определим по формуле:

Re = (ρ·W·d)/μ = (992,2·0,57·0,25) / (653,3·10 -6 ) = 216422

Критическое значение критерия Reкр по справочным данным равно 4000. Полученное значение Re больше указанного критического, что говорит о турбулентном характере течения жидкости при заданных условиях.

Ответ: режим потока воды – турбулентный.

Расчеты онлайн

Автоматизированная система расчета потерь напора (давления) по длине, позволяющая произвести вычисления онлайн. Требуется заполнение формы с исходными данными.

Система онлайн расчета и построения характеристики трубопровода. В результате автоматических вычислений будет построен график – характеристика трубопровода.

Автоматизированная система расчета и построения характеристики трубопровода (сети), с последующим сопоставлением ее с характеристиками насосов и определением рабочих точек.

Краткие технические характеристики, область применения и преимущества гидравлических станций

Какие признаки позволяют определить неисправность компрессора холодильника, на что указывают гарь, изменение цвета масла

Чем отличаются компрессоры различных типов, для чего используются, в чем особенности их применения

Какие особенности гидропривода обуславливают его использование его в различных отраслях промышленности

Что такое рабочее место, каким инструментов должно быть оснащено?

Что такое сила поверхностно натяжения, какую она имеет природу? Из-за чего возникает капиллярный эффект

Что такое гидравлический пресс, как он работает, в чем его преимущества по сравнению с механическим

Как устроен регулятор давления, каким образом он позволяет поддерживать давление на постоянном уровне. Чем двухлинейный регулятор отличается от трехлинейного.

Как производится тепловой расчет гидропривода. Для чего нужны воздушные и водяные теплообменники?

Какие типы шлифовальных кругов используют в производстве. Какие абразивные и связующие материалы применяют при производстве дисков. Какие круги применяют для шлифования стали, обработки металлов.

Какое оборудование следует брать в аренду вместе с компрессором? По каким характеристикам подбирать оборудование?

Для чего нужна гидравлическая схема. Как обозначаются трубопроводы, насосы, клапаны другие элементы на гидросхеме?

Чем отличаются поворотные гидродвигатели различных типов, как они работают?

Как устроен шестеренный гидромотор, как вычислить вращающий момент и частоту вращения его вала?

Чем занимается инженер гидравлик, какое образование нужно получить, чтобы овладеть этой профессией?

Таблица шевелева онлайн калькулятор: читайте во всех подробностях

Ф.А. Шевелев и А.Ф. Шевелев

размещено: 26 Февраля 2013
обновлено: 28 Февраля 2013

Таблицы для гидравлического расчета водопроводных труб. Издание 6.

Исходные данные

Наружный диаметр мм

Толщина стенки мм

Длина трубопровода м

Средняя температура воды °C

Экв. шероховатость внутр. поверхностей труб:

Сумма к-тов местных сопротивлений

Òàáëèöà ïðîïóñêíîé ñïîñîáíîñòè òðóá äëÿ æèäêîñòåé, ãàçà, âîäÿíîãî ïàðà

Âèä æèäêîñòè

Ñêîðîñòü (ì/ñåê)

Âîäà ãîðîäñêîãî âîäîïðîâîäà

Âîäà òðóáîïðîâîäíîé ìàãèñòðàëè

Âîäà ñèñòåìû öåíòðàëüíîãî îòîïëåíèÿ

Âîäà íàïîðíîé ñèñòåìû â ëèíèè òðóáîïðîâîäà

Ìàñëî ëèíèè òðóáîïðîâîäà

Ìàñëî â íàïîðíîé ñèñòåìå ëèíèè òðóáîïðîâîäà

Ïàð â îòîïèòåëüíîé ñèñòåìå

Ïàð ñèñòåìû öåíòðàëüíîãî òðóáîïðîâîäà

Ïàð â îòîïèòåëüíîé ñèñòåìå ñ âûñîêîé òåìïåðàòóðîé

Âîçäóõ è ãàç â öåíòðàëüíîé ñèñòåìå òðóáîïðîâîäà

×àùå âñåãî, â êà÷åñòâå òåïëîíîñèòåëÿ èñïîëüçóåòñÿ îáû÷íàÿ âîäà. Îò åå êà÷åñòâà çàâèñèò ñêîðîñòü óìåíüøåíèÿ ïðîïóñêíîé ñïîñîáíîñòè â òðóáàõ. ×åì âûøå êà÷åñòâî òåïëîíîñèòåëÿ, òåì äîëüøå ïðîñëóæèò òðóáîïðîâîä èç ëþáîãî ìàòåðèàëà (ñòàëü ÷óãóí, ìåäü èëè ïëàñòèê).

Расчёт

Зависимость потери давления от диаметра трубы

В вашем броузере не работает html5

При расчете системы водоснабжения или отопления вы сталкиваетесь с задачей подбора диаметра трубопровода. Для решения такой задачи нужно сделать гидравлический расчет вашей системы, а для еще более простого решения – можно воспользоваться гидравлическим расчетом онлайн, что мы сейчас и сделаем.

Порядок работы:
1. Выберите подходящий метод расчета (расчет по таблицам Шевелева, теоретическая гидравлика или по СНиП 2.04.02-84)
2. Выберите материал трубопроводов
3. Задайте расчетный расход воды в трубопроводе
4. Задайте наружный диаметр и толщину стенки трубопровода
5. Задайте длину трубопровода
6. Задайте среднюю температуру воды

Результатом расчета будет график и приведенные ниже значения гидравлического расчета.

График состоит из двух значений (1 – потери напора воды, 2 – скорость воды). Оптимальные значения диаметра трубы будут написаны зеленым под графиком.

Т.е. вы должны задать диаметр так, чтобы точка на графике была строго над вашими зелеными значениями диаметра трубопровода, потому что только при таких значениях скорость воды и потери напора будут оптимальные.

Потери давления в трубопроводе показывают потерю давления на заданном участке трубопровода. Чем выше потери, тем больше придется совершить работы, чтобы доставить воду в нужное место.

Характеристика гидравлического сопротивления показывает, насколько эффективно подобран диаметр трубы в зависимости от потерь давления.

— если Вам необходимо узнать скорость жидкости/воздуха/газа в трубопроводе различного сечения – воспользуйтесь этим калькулятором

Если данный гидравлический расчет трубопроводов был Вам полезен, то не забывайте делиться им с друзьями и коллегами.

Ðàñ÷åò ïðîïóñêíîé ñïîñîáíîñòè òðóá

Äëÿ òî÷íûõ è ïðîôåññèîíàëüíûõ ðàñ÷åòîâ íåîáõîäèìî èñïîëüçîâàòü ñëåäóþùèå ïîêàçàòåëè:

  • Ìàòåðèàë, èç êîòîðîãî èçãîòîâëåíû òðóáû è äðóãèå ýëåìåíòû ñèñòåìû;
  • Äëèíà òðóáîïðîâîäà
  • Êîëè÷åñòâî òî÷åê âîäîïîòðåáëåíèÿ (äëÿ ñèñòåìû ïîäà÷è âîäû)

Íàèáîëåå ïîïóëÿðíûå ñïîñîáû ðàñ÷åòà:

1. Ôîðìóëà. Äîñòàòî÷íî ñëîæíàÿ ôîðìóëà, êîòîðàÿ ïîíÿòíà ëèøü ïðîôåññèîíàëàì, ó÷èòûâàåò ñðàçó íåñêîëüêî çíà÷åíèé. Îñíîâíûå ïàðàìåòðû, êîòîðûå ïðèíèìàþòñÿ âî âíèìàíèå – ìàòåðèàë òðóá (øåðîõîâàòîñòü ïîâåðõíîñòè) è èõ óêëîí.

2. Òàáëèöà. Ýòî áîëåå ïðîñòîé ñïîñîá, ïî êîòîðîìó êàæäûé æåëàþùèé ìîæåò îïðåäåëèòü ïðîïóñêíóþ ñïîñîáíîñòü òðóáîïðîâîäà. Ïðèìåðîì ìîæåò ïîñëóæèòü èíæåíåðíàÿ òàáëèöà Ô. Øåâåëåâà, ïî êîòîðîé ìîæíî óçíàòü ïðîïóñêíóþ ñïîñîáíîñòü, èñõîäÿ èç ìàòåðèàëà òðóáû.

3. Êîìïüþòåðíàÿ ïðîãðàììà. Îäíó èç òàêèõ ïðîãðàìì ëåãêî ìîæíî íàéòè è ñêà÷àòü â ñåòè Èíòåðíåò. Îíà ðàçðàáîòàíà ñïåöèàëüíî äëÿ òîãî, ÷òîá îïðåäåëèòü ïðîïóñêíóþ ñïîñîáíîñòü äëÿ òðóá ëþáîãî êîíòóðà. Äëÿ òîãî ÷òî óçíàòü çíà÷åíèå, íåîáõîäèìî ââåñòè â ïðîãðàììó èñõîäíûå äàííûå, òàêèå êàê ìàòåðèàë, äëèíà òðóá, êà÷åñòâî òåïëîíîñèòåëÿ è ò.ä.

Ñëåäóåò ñêàçàòü, ÷òî ïîñëåäíèé ñïîñîá, õîòü è ÿâëÿåòñÿ ñàìûì òî÷íûì, íå ïîäõîäèò äëÿ ðàñ÷åòîâ ïðîñòûõ áûòîâûõ ñèñòåì. Îí äîñòàòî÷íî ñëîæåí, è òðåáóåò çíàíèÿ çíà÷åíèé ñàìûõ ðàçëè÷íûõ ïîêàçàòåëåé. Äëÿ ðàñ÷åòà ïðîñòîé ñèñòåìû â ÷àñòíîì äîìå ëó÷øå âîñïîëüçîâàòüñÿ òàáëèöàìè.

Ïðèìåð ðàñ÷åòà ïðîïóñêíîé ñïîñîáíîñòè òðóáîïðîâîäà

Äëèíà òðóáîïðîâîäà – âàæíûé ïîêàçàòåëü ïðè ðàñ÷åòå ïðîïóñêíîé ñïîñîáíîñòè Ïðîòÿæåííîñòü ìàãèñòðàëè îêàçûâàåò ñóùåñòâåííîå âëèÿíèå íà ïîêàçàòåëè ïðîïóñêíîé ñïîñîáíîñòè. ×åì áîëüøåå ðàññòîÿíèå ïðîõîäèò âîäà, òåì ìåíüøåå äàâëåíèå îíà ñîçäàåò â òðóáàõ, à çíà÷èò, ñêîðîñòü ïîòîêà óìåíüøàåòñÿ.

Ïðèâîäèì íåñêîëüêî ïðèìåðîâ. Îïèðàÿñü íà òàáëèöû, ðàçðàáîòàííûå èíæåíåðàìè äëÿ ýòèõ öåëåé.

Ïðîïóñêíàÿ ñïîñîáíîñòü òðóá:

  • 0,182 ò/÷ ïðè äèàìåòðå 15 ìì
  • 0,65 ò/÷ ñ äèàìåòðîì òðóáû 25 ìì
  • 4 ò/÷ ïðè äèàìåòðå 50 ìì

Êàê ìîæíî óâèäåòü èç ïðèâåäåííûõ ïðèìåðîâ, áîëüøèé äèàìåòð óâåëè÷èâàåò ñêîðîñòü ïîòîêà. Åñëè äèàìåòð óâåëè÷èòü â 2 ðàçà, òî ïðîïóñêíàÿ ñïîñîáíîñòü òîæå âîçðàñòåò. Ýòó çàâèñèìîñòü îáÿçàòåëüíî ó÷èòûâàþò ïðè ìîíòàæå ëþáîé æèäêîñòíîé ñèñòåìû, áóäü òî âîäîïðîâîä, âîäîîòâåäåíèå èëè òåïëîñíàáæåíèå. Îñîáåííî ýòî êàñàåòñÿ îòîïèòåëüíûõ ñèñòåì, òàê êàê â áîëüøèíñòâå ñëó÷àåâ îíè ÿâëÿþòñÿ çàìêíóòûìè, è îò ðàâíîìåðíîé öèðêóëÿöèè æèäêîñòè çàâèñèò òåïëîñíàáæåíèå â çäàíèè.

Таблицы шевелевых

Таблицы для гидравлического расчета труб ( Шевелев Ф. А.)

Настоящие таблицы предназначены для гидравлического расчета водопроводных труб и являются пятым дополненным изданием ранее опубликованных таблиц. Таблицы составлены по формулам, которые были получены в результате исследований, проведенных во ВНИИ ВОДГЕО д-ром техн. наук, проф. Ф. А. Шевелевым.

Пользование указанными формулами для стальных, чугунных и асбестоцементных труб предусмотрено действующими нормативными документами. По сравнению с четвертым изданием (1970 г.) книга дополнена таблицей для гидравлического расчета стеклянных труб, исследование которых проведено инж. А. Ф. Шевелевым.

Всесоюзный научно-исследовательский институт ВОДГЕО

Предисловие
1. Расчетные формулы и структура таблиц
A. Стальные и чугунные трубы
Б. Асбестоцементные трубы
B. Пластмассовые трубы
Г. Стеклянные трубы
Д. Выбор диаметров труб с учетом экономического фактора
Е. Примеры расчета
II. Таблицы для гидравлического расчета стальных и чугунных водопроводных труб
Таблица I Значения 1000 i и v для стальных (газовых) труб d=6-150 мм (ГОСТ 3262—62)
Таблица II. Значения 1000 i и v для стальных труб d=50-1600 мм (ГОСТ 10704—63)
Таблица III. Значения 1000 i и v для чугунных труб d=50-1200 мм (ГОСТ 5525—61 и ГОСТ 9583—61)
III. Таблицы для гидравлического расчета асбестоцементых водопроводных труб
Таблица IV. Значения 1000 i и v для асбестоцементных труб марок ВТЗ, ВТ6, ВТ9 (ГОСТ 539—65)
Таблица V. Значения 1000 i и v для асбестоцементных труб марка ВТ12 (ГОСТ 539—65)
Таблица VI. Значения 1000 i и v для асбестоцементных труб d=600-1000 мм
IV.Таблица для гидравлического расчета пластмассовых водопроводных труб
Таблица VII. Значения 1000 i и v для пластмассовых труб d=16-315 мм (МРТУ 6-05-917-67)
V. Таблица для гидравлического расчета стеклянных труб
Таблица VIII. Значения 1000 i и v для стеклянных труб d=45-221 мм (ГОСТ 8894-58)

Читайте также:  Пиролизные котлы своими руками чертежи бесплатно

Таблицы для гидравлического расчета труб ( Шевелев Ф
Таблицы для гидравлического расчета труб ( Шевелев Ф. А.) Предисловие Настоящие таблицы предназначены для гидравлического расчета водопроводных труб и являются пятым дополненным изданием ранее

Таблицы Шевелева — Шевелев Ф. А. Таблицы для гидравлического расчета стальных чугунных, асбестоцементных, пластмассовых и стеклянных водопроводных труб

Таблицы Шевелева — Шевелев Ф. А. Таблицы для гидравлического расчета стальных чугунных, асбестоцементных, пластмассовых и стеклянных водопроводных труб

Книга содержит таблицы для гидравлического расчета водопроводных труб из различных материалов. Таблицы составлены по формулам, выработанным в результате исследований, проведенных во ВНИИ ВОДГЕО, и охватывают нормированные размеры диаметров труб.

Справочное пособие предназначено для специалистов, работающих в области водоснабжения.

Таблицы Шевелева — Шевелев Ф. А. Таблицы для гидравлического расчета стальных чугунных, асбестоцементных, пластмассовых и стеклянных водопроводных труб

Книга содержит таблицы для гидравлического расчета водопроводных труб из различных материалов. Таблицы составлены по формулам, выработанным в результате исследований, проведенных во ВНИИ ВОДГЕО, и охватывают нормированные размеры диаметров труб.

Справочное пособие предназначено для специалистов, работающих в области водоснабжения.

I. Расчетные формулы и структура таблиц
A. Стальные и чугунные трубы
Б. Асбестоцементные трубы
B. Пластмассовые трубы
Г. Стеклянные трубы
Д. Выбор диаметров труб с учетом экономического фактора
Е. Примеры расчета
Д. Таблицы для гидравлического расчета стальных и чугунных водопроводных труб
Таблица I Значения 1000 i и v для стальных (газовых) труб d-6-150 мм (ГОСТ 3262—62)
Таблица II. Значения 1000 i и v для стальных труб d=50—l600 мм (ГОСТ 10704—63)
Таблица III. Значения 1000 i и v для чугунных труб d=50- 1200 мм (ГОСТ 5525—61 и ГОСТ 9583-61)
III. Таблицы для гидравлического расчета асбестоцементных водопроводных труб
Таблица IV. Значения 1000 i и v для асбестоцементных труб марок ВТЗ, ВТ6, ВТ9 (ГОСТ 539—65)
Таблица V. Значения 1000 i и v для асбестоцементных труб марка ВТ12 (ГОСТ 539—65)
Таблица VI. Значения 1000 / и v для асбестоцементных труб ?/«6004-1000 мм
IV. Таблица для гидравлического расчета пластмассовых водопроводных труб
Таблица VII. Значения 1000 i и и для пластмассовых труб ?/-164-315 мм (МРТУ 6-05-917-67)
V. Таблица для гидравлического расчета стеклянных труб
Таблица VIII. Значения 1000 i и v для стеклянных труб ?/«45 4-221 мм (ГОСТ 8894-58)

Таблицы Шевелева – Шевелев Ф
Таблицы Шевелева – Шевелев Ф. А. Таблицы для гидравлического расчета стальных чугунных, асбестоцементных, пластмассовых и стеклянных водопроводных труб Книга

Как рассчитать пропускную способность трубы

Расчет пропускной способности – одна из самых сложных задач при прокладке трубопровода. В этой статье мы попробуем разобраться с тем, как именно это делается для разных видов трубопроводов и материалов труб.

Трубы с высокой пропускной способностью

Пропускная способность – важный параметр для любых труб, каналов и прочих наследников римского акведука. Однако, далеко не всегда на упаковке трубы (или на самом изделии) указана пропускная способность. Кроме того, от схемы трубопровода тоже зависит, сколько жидкости пропускает труба через сечение. Как правильно рассчитать пропускную способность трубопроводов?

Методы расчета пропускной способности трубопроводов

Существует несколько методик расчета данного параметра, каждая из которых является подходящей для отдельного случая. Некоторые обозначения, важные при определении пропускной способности трубы:

Наружный диаметр – физический размер сечения трубы от одного края внешней стенки до другого. При расчетах обозначается как Дн или Dн. Этот параметр указывают в маркировке.

Диаметр условного прохода – приблизительное значение диаметра внутреннего сечения трубы, округленное до целого числа. При расчетах обозначается как Ду или Dу.

Физические методы расчета пропускной способности труб

Значения пропускной способности труб определяют по специальным формулам. Для каждого типа изделий – для газо-, водопровода, канализации – способы расчета свои.

Табличные методы расчета

Существует таблица приближенных значений, созданная для облегчения определения пропускной способности труб внутриквартирной разводки. В большинстве случаев высокая точность не требуется, поэтому значения можно применять без проведения сложных вычислений. Но в этой таблице не учтено уменьшение пропускной способности за счет появления осадочных наростов внутри трубы, что характерно для старых магистралей.

Существует точная таблица расчета пропускной способности, называемая таблицей Шевелева, которая учитывает материал трубы и множество других факторов. Данные таблицы редко используются при прокладке водопровода по квартире, но вот в частном доме с несколькими нестандартными стояками могут пригодиться.

Расчет с помощью программ

В распоряжении современных сантехнических фирм имеются специальные компьютерные программы для расчета пропускной способности труб, а также множества других схожих параметров. Кроме того, разработаны онлайн-калькуляторы, которые хоть и менее точны, но зато бесплатны и не требуют установки на ПК. Одна из стационарных программ «TAScope» – творение западных инженеров, которое является условно-бесплатным. В крупных компаниях используют «Гидросистема» – это отечественная программа, рассчитывающая трубы по критериям, влияющим на их эксплуатацию в регионах РФ. Помимо гидравлического расчета, позволяет считать другие параметры трубопроводов. Средняя цена 150 000 рублей.

Как рассчитать пропускную способность газовой трубы

Газ – это один из самых сложных материалов для транспортировки, в частности потому, что имеет свойство сжиматься и потому способен утекать через мельчайшие зазоры в трубах. К расчету пропускной способности газовых труб (как и к проектированию газовой системы в целом) предъявляют особые требования.

Формула расчета пропускной способности газовой трубы

Максимальная пропускная способность газопроводов определяется по формуле:

Qmax = 0.67 Ду2 * p

где p – равно рабочему давлению в системе газопровода + 0,10 мПа или абсолютному давлению газа,

Ду – условный проход трубы.

Существует сложная формула для расчета пропускной способности газовой трубы. При проведении предварительных расчетов, а также при расчетах бытового газопровода обычно не используется.

Qmax = 196,386 Ду2 * p/z*T

где z – коэффициент сжимаемости,

Т- температура перемещаемого газа, К,

Согласно этой формуле определяется прямая зависимость температуры перемещаемой среды от давления. Чем выше значение Т, тем больше газ расширяется и давит на стенки. Поэтому инженеры при расчетах крупных магистралей учитывают возможные погодные условия в местности, где проходит трубопровод. Если номинальное значение трубы DN будет меньше давления газа, образующегося при высоких температурах летом (например, при +38…+45 градусов Цельсия), тогда вероятно повреждение магистрали. Это влечет утечку ценного сырья, и создает вероятность взрыва участка трубы.

Таблица пропускных способностей газовых труб в зависимости от давления

Существует таблица расчетов пропускных способностей газопровода для часто применяемых диаметров и номинального рабочего давления труб. Для определения характеристики газовой магистрали нестандартных размеров и давления потребуются инженерные расчеты. Также на давление, скорость движения и объем газа влияет температура наружного воздуха.

Максимальная скорость (W) газа в таблице – 25 м/с, а z (коэффициент сжимаемости) равен 1. Температура (Т) равна 20 градусов по шкале Цельсия или 293 по шкале Кельвина.

Как рассчитать пропускную способность трубы
Расчет пропускной способности – одна из самых сложных задач при прокладке трубопровода. В этой статье мы попробуем разобраться с тем, как именно это делается для разных видов трубопроводов и материалов труб.

Таблицы для гидравлического расчёта

Книга «Таблицы для гидравлического расчёта» автора Шевелев Олег оценена посетителями КнигоГид, и её читательский рейтинг составил 5.00 из 5.
Для бесплатного просмотра предоставляются: аннотация, публикация, отзывы, а также файлы на скачивания.
В нашей онлайн библиотеке произведение Таблицы для гидравлического расчёта можно скачать в форматах epub, fb2, pdf, txt, html или читать онлайн.

Онлайн библиотека КнигоГид непременно порадует читателей текстами иностранных и российских писателей, а также гигантским выбором классических и современных произведений. Все, что Вам необходимо — это найти по аннотации, названию или автору отвечающую Вашим предпочтениям книгу и загрузить ее в удобном формате или прочитать онлайн.

Другие произведения автора

К нашему сожалению, у книги отсутствуют файлы для скачивания.

Вы можете внести посильный вклад в развитие сайта КнижныйГид рассказав о нас друзьям в социальных сетях:

После скачивания Вы сможете открыть книгу «Таблицы для гидравлического расчёта» на большинстве современных устройств. Выберите подходящий формат файла, перенесите его на электронную книгу/электронную читалку, на телефон или смартфон (работающий на android, iOS и пр.), на iPad или иной планшет, на iPhone, iPod, компьютер (ПК, PC) или отправьте документ на печать, если предпочитаете работать с бумажным носителем.

Все книги на сайте представлены исключительно в ознакомительных целях. После скачивания книги и ознакомления с ее содержимым Вы должны незамедлительно ее удалить. Копируя и сохраняя текст книги, Вы принимаете на себя всю ответственность, согласно действующему законодательству об авторских и смежных правах.

Администрация сайта призывает своих посетителей приобретать книги только легальным путем.

Администрация сайта оперативно блокирует доступ к незаконным и экстремистским материалам при получении уведомления в течение 48 часов.
Согласно правилам сайта, пользователям запрещено размещать произведения, нарушающие авторские права. Портал КнигоГид не инициирует размещение, не определяет получателя, не утверждает и не проверяет все загружаемые произведения из-за отсутствия технической возможности.

Если вы обнаружили незаконные материалы или нарушение авторских прав, то просим вас прислать жалобу.

Таблицы для гидравлического расчёта
Книга «Таблицы для гидравлического расчёта» автора Шевелев Олег оценена посетителями КнигоГид, и её читательский рейтинг составил 5.00 из 5.Для бесплатного просмотра предоставляются: аннотация, публикация, отзывы, а также файлы на скачивания.В нашей онлайн библиотеке произведение Таблицы для гидравлического расчёта можно скачать в форматах epub, fb2, pdf, txt, html или читать онлайн.Онлайн библиотека КнигоГид непременно порадует читателей текстами иностранных и российских писателей, а также гига…

Расчет водопроводной сети города , страница 10

Схема потокораспределения сети при максимальном хозяйственном водопотреблении

Схема потокораспределения сети при максимальном транзите в водонапорную башню

Схема потокораспределения сети при максимальном хозяйственном

Определение диаметров участков сети

Диаметры подбираются для двух расчетных режимов работы сети: режима максимального водопотребления и режима максимального транзита в башню.

Диаметры участков сети выбираются с учетом требований экономичности, котрые характеризуется экономическим фактором Э, который для условий Беларуси принимается равным 0,75.

Определение диаметров производится по таблице 12 справочника Шевелева.

Данные расчета приведены в табл.9.

Расчетные расходы, л/с

Режим максимального ВП

Режим максимального транзита в башню

Определение расчетных расходов воды на участках определяется по правилу Кирхгофа.

Данные гидравлического расчета участка записываются в виде над каждым расчетным участком.

d – диаметр участка сети

lФ – фактическая длина участка сети

q – расчетный расход на участке

h – потери напора на участке

i – гидравлический уклон, определяемый по таблице Шевелева и зависящий от материала труб

После определения потерь напора на отдельных участках сети производится увязка потерь напора в кольцах и увязка колец между собой.

Увязка сети производится двумя методами: методом Андрияшева и методом Лобачёва В.Т. и Кросса.

4.2 Увязка сети по методу Андрияшева.

Метод Андрияшева отличается наглядностью, т.к. весь расчёт проводится на расчётных схемах.

Увязка сети представляет собой систему последовательных попыток по исправлению предварительно намечаных расходов, путём пропуска по кольцам сети увязочного расхода ∆q.

Увязочный расход не нарушает баланса расхода воды в узлах, но уменьшает расходы воды на перегруженных и увеличивает на недогруженных участках.

q -средне арифметический расход замкнутого контура, л/с,

∆ h-невязка рассматриваемого кольца, м ,

∑h-арифметическая сумма потерь напора в кольце, м ,

С новыми расходами и определяем новую невязку.

Расчет водопроводной сети города, страница 10
Расчет водопроводной сети города , страница 10 Схема потокораспределения сети при максимальном хозяйственном водопотреблении Схема потокораспределения сети при максимальном транзите в

Ссылка на основную публикацию