Принцип работы индукционного нагревателя

Как устроен и работает индукционный нагреватель

Принцип работы индукционного нагревателя заключается в разогреве электропроводящей металлической заготовки индуцированным в ней замкнутым вихревым током. В качестве индуктора в индукционном нагревателе выступает катушка с переменным током, предназначенная для создания переменного электромагнитного поля высокой частоты.

Переменное магнитное поле высокой частоты, в свою очередь, действует на электропроводящий материал, наводя в нем замкнутый ток высокой плотности, и тем самым разогревая заготовку вплоть до ее расплавления. Данное явление известно давно, и объяснимо со времен Майкла Фарадея, описавшего явление электромагнитной индукции еще в 1931 году.

Изменяющееся во времени магнитное поле наводит переменную ЭДС в проводнике, который оно при этом своими силовыми линиями пересекает. Таким проводником может в принципе быть обмотка трансформатора, сердечник трансформатора, или цельный кусок какого-нибудь металла.

Если ЭДС наводится в обмотке, то получается трансформатор или приемник, а если прямо в магнитопроводе или в накоротко замкнутой обмотке — получается индукционный нагрев магнитопровода или обмотки.

В некачественно спроектированном трансформаторе, например, нагрев сердечника токами Фуко был бы однозначно явлением вредным, но в индукционном нагревателе похожее явление служит для достижения полезной цели.

С точки зрения характера нагрузки, индукционный нагреватель с разогреваемой в нем проводящей заготовкой — это как трансформатор с закороченной вторичной обмоткой из одного витка. Поскольку сопротивление внутри заготовки крайне мало, то даже небольшого наведенного вихревого электрического поля достаточно, чтобы создать ток такой высокой плотности, чтобы его тепловое действие (см. Закон Джоуля-Ленца) оказалось бы очень выразительным и практичным.

Первая канальная печь такого рода появилась в Швеции в 1900 году, она питалась током частотой 50-60 Гц, применялась для канальной плавки стали, а металл подавался в тигель, расположенный на манер короткозамкнутого витка вторичной обмотки трансформатора. Проблема экономичности, разумеется, присутствовала, так как КПД был менее 50%.

Сегодня индукционный нагреватель — это трансформатор без сердечника, состоящий из одного или нескольких витков относительно толстой медной трубки, по которой при помощи насоса пропускается охлаждающая жидкость системы активного охлаждения. В электропроводящее тело трубки, как в катушку индуктивности, подается переменный ток частотой от нескольких килогерц до единиц мегагерц, в зависимости от параметров обрабатываемого образца.

Дело в том, то при высоких частотах происходит вытеснение вихревого тока из нагреваемого самим вихревым током образца, так как магнитное поле этого самого вихревого тока вытесняет породивший себя ток на поверхность.

Это проявляется как скин-эффект, когда максимальная плотность тока оказывается в результате приходящейся на тонкий слой поверхности заготовки, и чем выше частота и ниже удельное электрическое сопротивление разогреваемого материала — тем скин-слой тоньше.

Для меди, например, на частоте 2 МГц скин-слой составляет всего четверть миллиметра! Это значит, что внутренние слои медной заготовки разогреваются не вихревыми токами непосредственно, а путем теплопроводности от тонкого наружного ее слоя. Тем не менее, эффективности технологии достаточно, чтобы получить быстрый разогрев или плавление практически любого электропроводящего материала.

Современные индукционные нагреватели строятся на основе колебательного контура (катушка-индуктор и батарея конденсаторов), питаемого резонансным инвертором на IGBT или MOSFET – транзисторах, позволяющих достичь рабочих частот до 300 кГц. Для более высоких частот применяют электронные лампы, которые позволяют достичь частот в 5 МГц и выше, например для плавки в ювелирном деле требуются довольно высокие частоты, так как размер заготовки очень мал. С целью повышения добротности рабочих контуров, прибегают к одному из двух путей: либо повышают частоту, либо увеличивают индуктивность контура, путем добавления в его конструкцию ферромагнитных вставок.

Индукционный нагрев, основные принципы и технологии.

Индукционный нагрев (Induction Heating) — метод бесконтактного нагрева токами высокой частоты (англ. RFH — radio-frequency heating, нагрев волнами радиочастотного диапазона) электропроводящих материалов.

Индукционный нагрев – это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Следовательно – это нагрев изделий из проводящих материалов (проводников) магнитным полем индукторов (источников переменного магнитного поля). Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) заготовка помещается в так называемый индуктор, представляющий собой один или несколько витков провода (чаще всего медного). В индукторе с помощью специального генератора наводятся мощные токи различной частоты (от десятка Гц до нескольких МГц), в результате чего вокруг индуктора возникает электромагнитное поле. Электромагнитное поле наводит в заготовке вихревые токи. Вихревые токи разогревают заготовку под действием джоулева тепла (см. закон Джоуля-Ленца).

Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.

На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки Δ (Поверхностный-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое Δ плотность тока уменьшается в e раз относительно плотности тока на поверхности заготовки, при этом в скин-слое выделяется 86,4 % тепла (от общего тепловыделения. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относительной магнитной проницаемости μ материала заготовки.

Для железа, кобальта, никеля и магнитных сплавов при температуре ниже точки Кюри μ имеет величину от нескольких сотен до десятков тысяч. Для остальных материалов (расплавы, цветные металлы, жидкие легкоплавкие эвтектики, графит, электролиты, электропроводящая керамика и т. д.) μ примерно равна единице.

Например, при частоте 2 МГц глубина скин-слоя для меди около 0,25 мм, для железа ≈ 0,001 мм.

Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием — этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.

Применение:
Сверхчистая бесконтактная плавка, пайка и сварка металла.
Получение опытных образцов сплавов.
Гибка и термообработка деталей машин.
Ювелирное дело.
Обработка мелких деталей, которые могут повредиться при газопламенном или дуговом нагреве.
Поверхностная закалка.
Закалка и термообработка деталей сложной формы.
Обеззараживание медицинского инструмента.

Высокоскоростной разогрев или плавление любого электропроводящего материала.

Возможен нагрев в атмосфере защитного газа, в окислительной (или восстановительной) среде, в непроводящей жидкости, в вакууме.

Нагрев через стенки защитной камеры, изготовленной из стекла, цемента, пластмасс, дерева — эти материалы очень слабо поглощают электромагнитное излучение и остаются холодными при работе установки. Нагревается только электропроводящий материал — металл (в том числе расплавленный), углерод, проводящая керамика, электролиты, жидкие металлы и т. п.

За счёт возникающих МГД усилий происходит интенсивное перемешивание жидкого металла, вплоть до удержания его в подвешенном состоянии в воздухе или защитном газе — так получают сверхчистые сплавы в небольших количествах (левитационная плавка, плавка в электромагнитном тигле).

Поскольку разогрев ведётся посредством электромагнитного излучения, отсутствует загрязнение заготовки продуктами горения факела в случае газопламенного нагрева, или материалом электрода в случае дугового нагрева. Помещение образцов в атмосферу инертного газа и высокая скорость нагрева позволят ликвидировать окалинообразование.

Удобство эксплуатации за счёт небольшого размера индуктора.

Индуктор можно изготовить особой формы — это позволит равномерно прогревать по всей поверхности детали сложной конфигурации, не приводя к их короблению или локальному непрогреву.

Легко провести местный и избирательный нагрев.

Так как наиболее интенсивно разогрев идет в тонких верхних слоях заготовки, а нижележащие слои прогреваются более мягко за счёт теплопроводности, метод является идеальным для проведения поверхностной закалки деталей (сердцевина при этом остаётся вязкой).

Лёгкая автоматизация оборудования — циклов нагрева и охлаждения, регулировка и удерживание температуры, подача и съём заготовок.

Установки индукционного нагрева:

На установках с рабочей частотой до 300 кГц используют инверторы на IGBT-сборках или MOSFET-транзисторах. Такие установки предназначены для разогрева крупных деталей. Для разогрева мелких деталей используются высокие частоты (до 5 МГц, диапазон средних и коротких волн), установки высокой частоты строятся на электронных лампах.

Также для разогрева мелких деталей строятся установки повышенной частоты на MOSFET-транзисторах на рабочие частоты до 1,7 МГц. Управление транзисторами и их защита на повышенных частотах представляет определённые трудности, поэтому установки повышенной частоты пока ещё достаточно дороги.

Индуктор для нагрева мелких деталей имеет небольшие размеры и небольшую индуктивность, что приводит к уменьшению добротности рабочего колебательного контура на низких частотах и снижению КПД, а также представляет опасность для задающего генератора (добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью слишком хорошо «накачивается» энергией, образует короткое замыкание по индуктору и выводит из строя задающий генератор). Для повышения добротности колебательного контура используют два пути:
– повышение рабочей частоты, что приводит к усложнению и удорожанию установки;
– применение ферромагнитных вставок в индукторе; обклеивание индуктора панельками из ферромагнитного материала.

Так как наиболее эффективно индуктор работает на высоких частотах, промышленное применение индукционный нагрев получил после разработки и начала производства мощных генераторных ламп. До первой мировой войны индукционный нагрев имел ограниченное применение. В качестве генераторов тогда использовали машинные генераторы повышенной частоты (работы В. П. Вологдина) или искровые разрядные установки.

Схема генератора может быть в принципе любой (мультивибратор, RC-генератор, генератор с независимым возбуждением, различные релаксационные генераторы), работающей на нагрузку в виде катушки-индуктора и обладающей достаточной мощностью. Необходимо также, чтобы частота колебаний была достаточно высока.

Например, чтобы «перерезать» за несколько секунд стальную проволоку диаметром 4 мм, необходима колебательная мощность не менее 2 кВт при частоте не менее 300 кГц.

Выбирают схему по следующим критериям: надёжность; стабильность колебаний; стабильность выделяемой в заготовке мощности; простота изготовления; удобство настройки; минимальное количество деталей для уменьшения стоимости; применение деталей, в сумме дающих уменьшение массы и габаритов, и др.

На протяжении многих десятилетий в качестве генератора высокочастотных колебаний применялась индуктивная трёхточка (генератор Хартли, генератор с автотрансформаторной обратной связью, схема на индуктивном делителе контурного напряжения). Это самовозбуждающаяся схема параллельного питания анода и частотно-избирательной цепью, выполненной на колебательном контуре. Она успешно использовалась и продолжает использоваться в лабораториях, ювелирных мастерских, на промышленных предприятиях, а также в любительской практике. К примеру, во время второй мировой войны на таких установках проводили поверхностную закалку катков танка Т-34.

Недостатки трёх точки:

Низкий кпд (менее 40 % при применении лампы).

Сильное отклонение частоты в момент нагрева заготовок из магнитных материалов выше точки Кюри (≈700С) (изменяется μ), что изменяет глубину скин-слоя и непредсказуемо изменяет режим термообработки. При термообработке ответственных деталей это может быть недопустимо. Также мощные твч-установки должны работать в узком диапазоне разрешённых Россвязьохранкультурой частот, поскольку при плохом экранировании являются фактически радиопередатчиками и могут оказывать помехи телерадиовещанию, береговым и спасательным службам.

При смене заготовок (например, более мелкой на более крупную) изменяется индуктивность системы индуктор-заготовка, что также приводит к изменению частоты и глубины скин-слоя.

При смене одновитковых индукторов на многовитковые, на более крупные или более малогабаритные частота также изменяется.

Под руководством Бабата, Лозинского и других учёных были разработаны двух- и трёхконтурные схемы генераторов, имеющих более высокий кпд (до 70 %), а также лучше удерживающие рабочую частоту. Принцип их действия состоит в следующем. За счёт применения связанных контуров и ослабления связи между ними, изменение индуктивности рабочего контура не влечёт сильного изменения частоты частотозадающего контура. По такому же принципу конструируются радиопередатчики.

Недостаток многоконтурных систем — повышенная сложность и возникновение паразитных колебаний УКВ-диапазона, которые бесполезно рассеивают мощность и выводят из строя элементы установки. Также такие установки склонны к затягиванию колебаний — самопроизвольному переходу генератора с одной из резонансных частот на другую.

Современные твч-генераторы — это инверторы на IGBT-сборках или мощных MOSFET-транзисторах, обычно выполненные по схеме мост или полумост. Работают на частотах до 500 кГц. Затворы транзисторов открываются с помощью микроконтроллерной системы управления. Система управления в зависимости от поставленной задачи позволяет автоматически удерживать

а) постоянную частоту
б) постоянную мощность, выделяемую в заготовке
в) максимально высокий КПД.

Читайте также:  Как почистить водонагреватель от накипи в домашних условиях

Например, при нагреве магнитного материала выше точки Кюри толщина скин-слоя резко увеличивается, плотность тока падает, и заготовка начинает греться хуже. Также пропадают магнитные свойства материала и прекращается процесс перемагничивания – заготовка начинает греться хуже, сопротивление нагрузки скачкообразно уменьшается – это может привести к “разносу” генератора и выходу его из строя. Система управления отслеживает переход через точку Кюри и автоматически повышает частоту при скачкообразном уменьшении нагрузки (либо уменьшает мощность).

Индуктор по возможности необходимо располагать как можно ближе к заготовке. Это не только увеличивает плотность электромагнитного поля вблизи заготовки (пропорционально квадрату расстояния), но и увеличивает коэффициент мощности Cos(φ).

Увеличение частоты резко уменьшает коэффициент мощности (пропорционально кубу частоты).

При нагреве магнитных материалов дополнительное тепло также выделяется за счет перемагничивания, их нагрев до точки Кюри идет намного эффективнее.

При расчёте индуктора необходимо учитывать индуктивность подводящих к индуктору шин, которая может быть намного больше индуктивности самого индуктора (если индуктор выполнен в виде одного витка небольшого диаметра или даже части витка — дуги).

Имеются два случая резонанса в колебательных контурах: резонанс напряжений и резонанс токов.
Параллельный колебательный контур – резонанс токов.
В этом случае на катушке и на конденсаторе напряжение такое же, как у генератора. При резонансе, сопротивление контура между точками разветвления становится максимальным, а ток (I общ) через сопротивление нагрузки Rн будет минимальным (ток внутри контура I-1л и I-2с больше чем ток генератора).

В идеальном случае полное сопротивление контура равно бесконечности – схема не потребляет тока от источника. При изменение частоты генератора в любую сторону от резонансной частоты полное сопротивление контура уменьшается и линейный ток (I общ) возрастает.

Последовательный колебательный контур – резонанс напряжений.

Главной чертой последовательного резонансного контура является то, что его полное сопротивление минимально при резонансе. (ZL + ZC – минимум). При настройке частоты на величину, превышающую или лежащую ниже резонансной частоты, полное сопротивление возрастает.
Вывод:
В параллельном контуре при резонансе ток через выводы контура равен 0, а напряжение максимально.
В последовательном контуре наоборот – напряжение стремится к нулю, а ток максимален.

Принцип работы и сферы использования индукционных обогревателей

В стремлении минимизировать расходы на отопление, регулярно проводятся изыскания новых источников энергии. Те, которые не нашли широкого применения, называют «альтернативными». В их числе тепловая энергия, получаемая посредством магнитной индукции. Ее выгодность сложно переценить. Индукционные обогреватели — одни из самых экономичных. Эти приборы хороши и тем, что их можно сделать своими руками.

Что из себя представляют индукционные обогреватели?

Прибор, работающий по принципу магнитной индукции, не новшество. На производствах давно работают индукционные печи, в которых плавят металл. Но для решения бытовых проблем оборудование этого типа используется нечасто, несмотря на то, что работает от электросети с напряжением 220 и 380 В, экономично и безопасно в эксплуатации.

Зачем нужен и где используется?

В последние годы, благодаря информированности населения о новых источниках тепловой энергии, популярность индукционных устройств неуклонно растет.

Как работает: устройство и принцип действия


Несмотря на кажущуюся сложность, устройство и принцип работы индукционного обогревателя просты. Прибор состоит из нескольких элементов:

  • индуктора, который представляет собой катушку с намотанной на нее медной проволокой (внешний контур);
  • сердечника, в роли которого выступает труба с теплоносителем (внутренний контур).
  • на катушку подается электропитание от сети через трансформатор, генерирующий переменный высокочастотный ток;
  • в области катушки образуется магнитное поле, непрестанно меняющее свой вектор и продуцирующее вихревые потоки;
  • токи, возникающие в результате завихрений, нагревают внутренний контур;
  • тепло от металлической трубы передается находящейся в ней воде;
  • горячий теплоноситель циркулирует по магистрали системы отопления, непрестанно нагреваясь при прохождении внешнего контура индукционного прибора.

Отзывы об индукционных обогревателях: плюсы и минусы

Цивилизацией пока не найдены технологии, позволяющие создавать совершенную технику. Все современные обогреватели имеют свои достоинства и недостатки. Это утверждение справедливо и для индукционных.

  • высокий КПД, достигающий 99%;
  • в трубах системы отопления не образуется накипь;
  • в качестве теплоносителя подойдет любой из традиционных: вода, антифриз, минеральное масло высокой степени очистки;
  • нет необходимости в регулярном обслуживании системы: она способна бесперебойно функционировать длительный период времени;
  • монтаж обогревателя прост и не требует привлечения специалистов;
  • высокая степень пожаро- и электробезопасности;
  • возможность работы от сети постоянного и переменного тока.
  • требуется бесперебойное электроснабжение, потому в загородных условиях необходимо иметь резервный источник питания в виде генератора;
  • высокая цена на индукционные обогреватели, имеющиеся в продаже.

Производители и популярные модели: рейтинг лучших и цены

Потребителю, незнакомому с особенностями эксплуатации индукционных обогревателей, будет полезен обзор лучших моделей этого оборудования.

ЭДИСОН-4,7

Индукционные котлы марки «Эдисон» выпускает российское предприятие «Сибтехномаш». В линейке отопительного оборудования несколько агрегатов разной мощности, отличающихся габаритами и функционалом. Оборудование предназначено для работы в системах отопления замкнутого типа (автономных), потому в многоквартирном доме неприменимо. Все котлы «Эдисон» имеют возможность регулирования температуры по двум параметрам:

  • теплоносителя;
  • воздуха в помещении.

При выбранном режиме автоматически поддерживают заданные показатели.

  • мощность — 4,7 кВт;
  • теплоотдача — 3960 ккал/час;
  • максимальная температура теплоносителя — 115°С;
  • габариты — 370×220×1035 мм;
  • вес — 40 кг.

Стоимость: 28990 руб.

Электрокотел ЭДИСОН-50

Мощный котел индукционного типа, отличающийся высокой теплоотдачей — 42130 ккал/час. Оптимален для устройства системы отопления загородных домов и коттеджей. КПД агрегата достигает 98%. Оборудование работает от электросети с напряжением 380 В.

  • мощность — 50 кВт;
  • максимальная температура теплоносителя — 115°С;
  • габариты — 400x1070x760 мм;
  • вес — 240 кг.

Стоимость: 144000 руб.

Miratron А006

Индукционный котел, рассчитанный на обогрев жилых и производственных помещений. Оборудование имеет многоступенчатую систему электро- и пожаробезопасности. На нагревательном элементе котла не образуется накипь, прибор работает бесшумно. Управление ручное, автоматическое, удаленное через модуль GSM. На дисплее отображаются показатели работы аппарата.

  • мощность — 6 кВт;
  • максимальная температура теплоносителя — 115°С;
  • габариты — 400×1200×300 мм;
  • вес — 40 кг.

Стоимость: 45000 руб.

Индукционный котел Miratron А0024

Один из лучших индукционных обогревателей для дома и дачи. Котел предназначен для работы в одноконтурных системах отопления замкнутого типа. При монтаже бойлера косвенного нагрева способен обеспечить горячее водоснабжение. Предназначен для обогрева зданий площадью до 240 м 2 . Установка напольная.

  • мощность — 24 кВт;
  • отапливаемый объем — 672 м 3 ;
  • габариты — 1600x700x350 мм;
  • вес — 99,9 кг.

Стоимость: 123077 руб.

Торнадо-50

Оборудование представляет собой узел нагрева, предназначенный для монтажа в системах воздушного отопления. Успешно используется для создания требуемого температурного режима в пропарочных и сушильных камерах, в целях устройства тепловых завес. Обогреватель отличается высокой надежностью, оснащен системой автоматического управления с возможностью программирования работы котла по заданному графику. В числе преимущество аппарата экономичность и компактность.

  • мощность — 50 кВт;
  • максимальная температура воздуха на выходе — 80°С;
  • тепловая мощность — 42130 ккал/час;
  • габариты — 1550х1500х1360 мм;
  • вес — 50 кг.

Стоимость: 201050 руб.

Какого производителя и какой тип лучше выбрать: ТОП-3

Немного найдется компаний, специализирующихся на выпуске теплового оборудования индукционного типа. На российском рынке представлена продукция нескольких крупнейших производителей отопительной техники: Miratron, «ВИН», SAV, «Гейзер», «Сибтехномаш». Индукционные котлы и обогреватели этих брендов зарекомендовали себя как надежные и высокоэффективные.

Что учитывать при выборе устройства?

При выборе техники, работающий по принципу магнитной индукции, прежде всего учитывают ее мощность и рекомендуемую производителем площадь обслуживания. Немаловажный фактор — способ монтажа: настенный или напольный. Тяжеловесные индукционные котлы требуют наличия перекрытия, способного выдерживать значительные весовые нагрузки. Наиболее удобны в эксплуатации обогреватели с возможностью программирования режима работы.

3 лучших модели

Из представленных в обзоре, можно отметить несколько приборов, пользующихся повышенным спросом:


Эти обогреватели отличаются достойным качеством сборки, в конструкции использованы детали из высококачественных материалов.

Стоимость

Стоимость индукционных обогревателей зависит от нескольких параметров:

  • мощности;
  • способа управления;
  • функционала.

Самые доступные в цене — котлы «Эдион». При одинаковых технических характеристиках, они дешевле аналогов от других производителей:

  • ЭДИСОН-4,7 — 28990 руб;
  • ЭДИСОН-50 — 144000 руб.

Отопительное оборудование мощностью 6-50 кВт можно купить за 45-200 тыс руб:

  • Miratron А006 — 45000 руб;
  • Miratron А0024 — 123077 руб;
  • Торнадо-50 — 201050 руб.

Где купить индукционный обогреватель для производственных помещений или дома?

В Москве

  1. «Альтернативная энергия»; Рязанский проспект, д. 4А, стр. 2; +7 (495) 789-51-74.
  2. «Теплодвор»; Советская, 35; +7(495)48-132-48.
  3. SAV; Азовская 6 корп 3; +7 (495)766-53-17.

В Санкт-Петербурге

  1. «Альтернативная Энергия СПб»; Лиговский проспект дом 39; +7 (962) 699-28-98.
  2. «Ho.Re.Ca»; 1-й Верхний пер, 12б; ул. Коли Томчака д. 1/6 литер 6; +7 (929) 053-97-25.
  3. «Твердотопливные котлы»; Домостроительная, д. 1; +7 (812) 923-18-67.

Индукционные обогреватели с каждым годом набирают популярность, и производители пополняют линейки этого оборудования новыми моделями. В связи с этим, можно ожидать снижения цен на эту экономичную и надежную отопительную технику.

Принцип работы индукционного нагревателя

Индуктивный нагреватель функционирует благодаря взаимодействию генерируемых электромагнитным полем дросселя вихревых токов с металлической поверхностью. Существует несколько схем изготовления индукционного нагревателя своими руками. Самые доступные из них – конструкции из полипропиленовой трубы и сварочного инвертора.

Принцип работы индукционного нагревателя

Когда переменный электрический ток протекает по спирали дросселя, вокруг него формируется электромагнитное поле. При помещении в середину катушки сердечника из металла, обладающего магнитными свойствами, его температура повышается. Это индукционный нагрев – явление, возникающее под действием вихревых токов. Наблюдается оно только при питании дросселя переменным электротоком, обладающим достаточной частотой изменений знака и направления. Когда на индуктивную деталь поступает постоянный ток, изменения температуры сердечника не происходит.

На этом принципе основано функционирование индуктора для нагрева заготовок. Основным компонентом агрегата в большинстве случаев является спиральная конфигурация из металла. В плитах для приготовления пищи в этой роли задействован уплощенный элемент, находящийся на малом расстоянии от варочной панели. В отопительном котле роль индуктора выполняет трубка из стали, наполненная теплоносителем (его функцию выполняет жидкость).

Важными составляющими рассматриваемого агрегата являются генератор переменного тока и нагревательный элемент. Первый применяют для получения питания достаточно высокой частоты из типовой квартирной электросети в 50 Гц. Второй представляет собой конструкцию из металла, способную к поглощению теплоты при нахождении в полевом пространстве. Генератор направляет на индуктор (спиральный элемент) электроток, приведенный к нужным параметрам. При этом через катушку идет поток заряженных частиц, создающий поле. Металл, помещенный в зону его действия, разогревается под действием токов Фуке без прямого соприкосновения с индуктором. Для подогрева воды в таком агрегате необходимо наличие ее контакта с нагревательным элементом. Самым простым примером такой конструкции будет труба из металла, по которой проходит водный поток. В процессе жидкость охлаждает стенки, что продлевает срок службы конструкции.

Преимущества и недостатки прибора

Индукционный нагрев может предоставить ряд выгод, которые не способно дать применение электродных приспособлений. Поскольку нагрев жидкости осуществляется металлическим элементом, не принимающим участия в электрохимических реакциях, долговечность устройства зависит только от катушки. Продолжительностью ее эксплуатации определяется продолжительность функционирования устройства. Некоторые индукторы сохраняют работоспособность более 10 лет. С этим же связана совместимость агрегата с разными типами жидкостей-теплоносителей. Помимо простой воды для этой роли пригодны машинные масла и незамерзающие составы.

Внутренние части агрегата в процессе использования не покрываются скоплениями накипи. Благодаря постоянному соприкосновению с жидкостью снижается вероятность перегрева деталей, что также способствует продлению срока эксплуатации. Конвекция в устройстве обычно достигает достаточного уровня, чтобы не потребовалось устанавливать циркуляционный насос. Нет необходимости и в шумоизоляционных мероприятиях – аппарат работает достаточно тихо.

Однако индукционный нагреватель имеет и слабые стороны:

  1. Для функционирования устройства требуется электрическая энергия. В помещении, где не проведено электричество или нет возможности обеспечить к нему доступ, котел работать не сможет. В местах с регулярными сетевыми перебоями он не будет работать эффективно.
  2. При чрезмерном повышении температуры переносящая тепло жидкость переходит в газообразное состояние. Это провоцирует сильное повышение давления в конструкции, в результате чего может случиться разрыв труб. Чтобы это не произошло, потребуется оборудовать установку средствами контроля давления и температуры. Это могут быть манометр, термодатчик, приспособление для аварийного отключения при выходе параметров за рамки заданного диапазона.
Читайте также:  Водонагреватель газовый или электрический что лучше

Потребность в дополнительных оснастках может поспособствовать серьезному увеличению расходов на оборудование самодельного индукционного обогревателя.

Устройство считается почти полностью бесшумным, но на практике это не всегда так. Это касается моделей промышленного производства и установок, спроектированных в домашних условиях.

Варианты самодельных устройств

Сделать обогреватель в домашних условиях можно несколькими способами. Самым доступным вариантом является изготовление устройства из кухонной электрической плиты и полипропиленовой трубы. Сложным в исполнении, но достаточно мощным является инверторный аппарат.

Нагревательный элемент из трубы

Данная разработка предполагает демонтаж спирального индуктора, установленного в электроплите, и размещение на его месте новой конструкции. Для ее изготовления потребуется полипропиленовая трубка длиной 0,5 м и диаметром 4 см, магнитный элемент, 5 текстолитовых стержней, отводы для соединения с сетью отопления. Также понадобится приобрести моток проводника с площадью поперечника 2 мм² с покрытием из стеклоизола (такой кабель часто используют в сварочных трансформаторных устройствах) и металлические мочалки для мытья посуды.

Последовательность действий при изготовлении аппарата:

  1. В трубку помещают магнит и заполняют ее мочалками (вместо них допустимо применение порубленной проволоки).
  2. Монтируют отводы, снабженные резьбой.
  3. Вдоль корпуса наклеивают стерженьки, на которые наматывают провод, покрытый стеклоизолом.
  4. Разбирают варочную панель и снимают с нее заводской индуктор, исполненный в виде плоской спирали. На его место устанавливают подготовленную конструкцию.

Нагревателем в данном аппарате выступают металлические мочалки, помещенные в переменное поле катушки. При запуске панели в максимальном режиме при параллельном пропускании воды ее получится нагреть на 15-20 °С. Учитывая, что используемые для конструкции плитки обычно имеют мощность не более 2000 Вт, получившийся агрегат пригоден для обогрева жилых помещений площадью до 25 м².

Эффективность устройства можно увеличить, соединив его со сварочным аппаратом, но такая работа сопряжена с рядом трудностей. Во-первых, аппарат потребуется разбирать и искать на схеме места, еще не подвергшиеся выпрямлению. Это связано с тем, что в нем создается постоянный ток, а для функционирования нагревателя требуется переменный. Во-вторых, потребуется использовать более толстую проводку (например, медную диаметром 1,5 мм, покрытую эмалевым составом) и рассчитывать необходимое количество витков. Наконец, необходимо будет внедрить в установку механизм охлаждения.

Сборка индукционного котла

Данное решение не предполагает разборки плитки. Вместо этого мастеру будет нужно сварить по ее габаритам бачок котла. Берется профильная трубка из стали толщиной 2 мм и габаритами отверстия 2 на 4 см. Из нее потребуется сделать заготовочные элементы по ширине панели. Трубы свариваются по длине, совмещаясь меньшими сторонами. Кверху и книзу к торцовым частям нужно герметически приварить покрышки из железа. В них проделываются дырочки и устанавливаются патрубки, снабженные резьбой. Также нужно приварить пару уголков, формирующих полочку для печи.

Красить аппарат нужно температуростойким эмалевым составом. После его высыхания и закрепления котел монтируют на стену и врезают в отопительную систему. Варочная панель помещается в гнездышко с уголками и подсоединяется к электрической сети. Затем нужно наполнить установку теплоносителем, провести стравливание воздушных масс и завести нагрев индукторного элемента.

Самодельный нагреватель отличается недостаточной мощностью для обогрева больших жилплощадей. Морозной зимой он сможет отопить две маленькие комнаты. В переходные сезоны, когда температура воздуха на улице держится около нуля, агрегат сможет обслужить большие площади – до 40 м2.

Из сварочного инвертора

При намерении задействовать сварочный аппарат необходимо учитывать, что подсоединять индуктор к его зажимам напрямую строго запрещается. Нарушение этого требования чревато потерей работоспособности всех элементов установки. Чтобы объединить индуктивный нагреватель со сварочным аппаратом, в последнем придется провести ряд сложных манипуляций, требующих опытности мастера и детального понимания устройства агрегата. Первичную обмотку необходимо подключить вслед за преобразователем высокочастотных сигналов инверторного механизма вместо его встроенного индуктивного дросселя. Помимо этого, необходимо провести спайку блока конденсации и демонтировать диодный мостик.

Как сделать мощный индукционный нагреватель

Рассмотренные устройства имеют потребляемую мощность в районе 2,5 кВт. Чтобы изготовить аппарат с более высоким показателем (4 кВт), от мастера нужны серьезные знания в области радиоэлектроники. Неопытному радиолюбителю браться за эту работу небезопасно.

Одним из вариантов может быть конструкция из блока питания с двумя парами обмоток, трансформатора, драйверной и управляющей плат. Значение частоты, на которой функционирует агрегат, уступает резонансной. Две катушки служат для снабжения драйверов, одна – для платы управления, и еще одна является силовой. Она питает пусковой релейный механизм, вентилятор и насос охладителя.

Советы по безопасности

Установки этого типа широко применяются не только для отопления помещений, но и для проведения плавильных работ. Основная проблема, связанная с индукционными устройствами домашнего изготовления, связана с отсутствием узлов, обеспечивающих контроль показателей температуры и давления и предохранение от взрыва. Поэтому при эксплуатации таких агрегатов нужно проявлять внимательность и осторожность.

Перед запуском котла надлежит проверить наполнение полости теплоносителем. Корпус, выполненный из полимеров, без регулярного охлаждения жидкостью начнет плавиться. Это влечет за собой деформационные изменения и полный выход установки из строя. Также опасность может представлять выпадение накаленного металла из плавящегося корпуса. При таком инциденте потребуется провести замену ряда узлов установки.

К электричеству аппарат подключают через отдельный провод, который ведется от щита. Контакты нужно перекрыть изоляционным материалом. Если в конструкции задействован аппарат для сварки, его инвертор должен быть заземлен. Провод, используемый для этой операции, должен иметь 4-6 мм в поперечнике. Для предотвращения избыточного нагревания установки при отсутствии воды целесообразно вмонтировать во входное отверстие клапан избыточного давления.

Выводы и рекомендации

Браться за самостоятельное изготовление устройства есть резон, если в хозяйстве уже имеется индукционная панель. Затраты на ее приобретение достаточно высоки и сопоставимы с ценой электродного нагревателя. Мощность некоторых таких моделей достигает 10 кВт, в то время как смастерить в домашних условиях установку с показателем выше 2,5 кВт под силу только мастеру с должным уровнем компетентности (как минимум, нужно уметь собирать схему частотного преобразователя). Также перед монтажом необходимо удостовериться в отсутствии щелей и прорех, через которые жидкость из теплогенератора может просочиться наружу: такой инцидент способен вызвать пожар.

Индукционный нагреватель простой конструкции, рассчитанный на обслуживание небольшой площади помещения, несложно смастерить без специальной подготовки. Более мощные и эффективные варианты, например, со сварочным аппаратом или двумя платами, требуют от сборщика компетенций в области радиоэлектроники. Особенности строения этих установок обусловливают необходимость приобретения дополнительных средств контроля для обеспечения безопасности.

Индукционный нагреватель своими руками

Индукционный нагреватель незаменимая вещь для кузнецов, токарей, слесарей и домашних мастеров. С его помощью всегда легко и быстро можно нагреть и даже расплавить металл, вам не нужны дорогие теплоносители, такие, как уголь и газ, достаточно подключить к прибору электричество. Происходит бесконтактный нагрев металла токами высокой частоты, по научному волнами радиочастотного диапазона. Прибор широко применяют для термообработки, закалки и гибки деталей, бесконтактной плавки, пайки и сварки, металлов. В ювелирном деле для термической обработки мелких деталей. В медицине для дезинфекции медицинского инструмента. В автосервисе слесаря нагревают заржавевшие гайки. Так же индуктор устанавливают в индукционных котлах, применяемых для отапливания жилых помещений.

На этом рисунке изображена рабочая схема индукционного нагревателя, который вы легко можете сделать своими руками.

Схема индукционного нагревателя

Устройство состоит из задающего генератора высокой частоты собранного на двух мощных полевых транзисторах. Рабочее напряжение генератора зависит от мощности установленных полевых транзисторов. С транзисторами IRFP250 устройство можно питать напряжением от 12 до 30 вольт. А если установить транзисторы IRFP260, тогда напряжение питания можно поднять от 12 до 60 вольт.

Мощность индуктора заметно возрастет, температура нагрева металла поднимется более 1000 градусов, что позволит плавить металлы. В процессе работы транзисторы будут очень сильно нагреваться, поэтому их надо установить на большие радиаторы и поставить мощный вентилятор. На холостом ходу индуктор потребляет не менее 10А, а в рабочем состоянии не менее 15А, соответственно требуется очень мощный блок питания минимум на 20А.

На этом рисунке изображена печатная плата индукционного нагревателя.

Так же вам понадобятся резисторы R1, R2 на 10К мощностью 0.25 Ватт. Резисторы R3, R4 с сопротивлением 470 Ом не менее 2 Ватт. Диоды D1, D2 ультрабыстрые UF4007 или другие аналогичные на максимальный ток до 1А. Стабилитроны VD1, VD2 мощностью не менее 5 Ватт с напряжением стабилизации 12В например 1N5349 и другие. Дроссели L1, L2 размером 27х14х11 мм желтого цвета с белой полосой я вытащил из компьютерных блоков питания. На каждый дроссель надо намотать 25 витков медного провода диаметром 1 мм желательно в лаковой изоляции, если не найдете, подойдет одножильный провод в полихлорвиниловой изоляции на скорость сильно не влияет.

Конденсаторы С1-С16 металлоплёночные 0.33 мкФ 630В, соединяются параллельно рядами 4х4, в блоке всего шестнадцать штук. С меньшим рабочим напряжением лучше не ставить, будут сильно греться. Между конденсаторами оставляйте небольшое расстояние для хорошего охлаждения потоком воздуха.

Дроссели решил приклеить силиконовым герметиком, чтобы не болтались.

Важную деталь нагревателя, индуктор я сделал из медной трубки диаметром 6 мм длинною 1 метр. Купить такую можно в любом автомагазине типа «Газовщик» и там где торгуют газо-балонным оборудованием для автомобилей. Медную трубку наматываем на кусок полипропиленовой трубы внешним диаметром 40 мм, такая труба используется в пластиковом отоплении. Делаем пять витков, расстояние между верхним краем первого витка и нижним краем пятого витка должно быть 40 мм. Концы трубы изгибаем, как на рисунке и прикрепляем к радиаторам с помощью двух клемных колодок для провода сечением 16 мм².

В процессе работы индуктор будет сильно нагреваться от раскаленной детали, что может привести к повреждению медной трубки, поэтому надо сделать охлаждение. На концы медной трубки я одел силиконовые трубки и подключил насос омывателя лобового стекла автомобиля. Насос от ВАЗ 2114 и силиконовые трубки купил в автомагазине. Получилась нормальная водяная система охлаждения.

Чтобы охлаждать радиаторы и блок конденсаторов поставил мощный вентилятор от процессора. Для питания от 12 вольт такого охлаждения вполне достаточно. Если захотите поднять напряжение от 12 до 60 вольт, чтобы получить максимальную мощность от индукционного нагревателя, поставьте более мощные радиаторы и более производительный вентилятор, например от отопителя салона ВАЗ 2107. Желательно сделать металлическую шторку оберегающую нагреваемую деталь и медный индуктор от потока нагнетаемого вентилятором холодного воздуха.

Поскольку индукционный нагреватель потребляет большой ток около 20А, все дорожки на печатной плате следует усилить медной проволокой, напаянной сверху.

А теперь самое интересное… Испытания индукционного нагревателя я проводил от двенадцати вольтового автомобильного аккумулятора. Другого источника питания способного выдавать большие токи у меня просто нет. Лезвие от канцелярского ножа нагрелось до красна за 10 секунд. А это хороший результат, если учесть, что индуктор запитан всего от двенадцати вольт!

Друзья! Если хотите собрать индукционный нагреватель своими руками. Мой вам совет… Сразу ставьте полевые транзисторы IRFP260, большие радиаторы и мощный вентилятор от отопителя салона ВАЗ 2107, для питания индуктора обязательно используйте мощный источник питания лучше всего начиная от 24В до 60В с силой тока минимум на 20А.

Радиодетали для сборки индукционного нагревателя

  • Транзисторы Т1, Т2 IRFP250 лучше IRFP260 2 шт.
  • Резисторы R1, R2 10K 0.25W 2 шт. R3, R4 470R 2W 2 шт.
  • Диоды D1, D2 ультрабыстрые UF4007 2 шт. или аналогичные
  • Стабилитроны VD1, VD2 на 12V 1W 1N5349 или аналогичные 2 шт.
  • Конденсаторы C1-C16 0.33mf 630V 16 шт.
  • Дроссели от компьютерного БП желтые с белой полосой, размер 27х14х11 мм 2 шт.
  • Колодка клемная для провода сечением 16 мм² 2 шт.
  • Провод медный в лаковой изоляции d=1 мм длина 2 метра
  • Трубка медная d=6 мм, длина 1 метр
  • Радиатор чем больше, тем лучше 2 шт.
  • Насос омывателя лобового стекла от ВАЗ 2114 1 шт.
  • Трубка силиконовая 2 метра
  • Вентилятор чем мощнее, тем лучше. Рекомендую от отопителя салона ВАЗ 2107 1 шт.
Читайте также:  Газовое отопление в частном доме

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать индукционный нагреватель своими руками


Как сделать индукционный нагреватель своими руками из сварочного инвертора

Индукционные отопительные котлы – это приборы, которые отличаются очень высоким КПД. Они позволяют заметно снизить затраты на электроэнергию по сравнению с традиционными приборами, оборудованными ТЭНами.

Модели промышленного производства недешевы. Однако сделать индукционный нагреватель своими руками сможет любой домашний мастер, владеющий нехитрым набором инструментов. Ему в помощь мы предлагаем подробное описание принципа действия и сборки эффективного обогревателя.

Принцип работы индукционного нагревателя

Индукционный нагрев невозможен без использования трех основных элементов:

  • индуктора;
  • генератора;
  • нагревательного элемента.

Индуктор представляет собой катушку, обычно выполненную из медной проволоки, с ее помощью генерируют магнитное поле. Генератор переменного тока используют для получения высокочастотного потока из стандартного потока домашней электросети с частотой 50 Гц.

В качестве нагревательного элемента применяется металлический предмет, способный поглощать тепловую энергию под воздействием магнитного поля. Если правильно соединить эти элементы, можно получить высокопроизводительный прибор, который прекрасно подходит для подогрева жидкого теплоносителя и отопления дома.

С помощью генератора электрический ток с необходимыми характеристиками подается на индуктор, т.е. на медную катушку. При прохождении через нее поток заряженных частиц формирует магнитное поле.

Особенность поля состоит в том, что оно обладает способностью на высоких частотах изменять направление электромагнитных волн. Если в это поле поместить какой-нибудь металлический предмет, он начнет нагреваться без непосредственного контакта с индуктором под воздействием созданных вихревых токов.

Отсутствие контакта позволяет сделать потери энергии при переходе из одного вида в другой ничтожными, чем и объясняется повышенный КПД индукционных котлов.

Чтобы подогреть воду для отопительного контура, достаточно обеспечить ее контакт с металлическим нагревателем. Часто в качестве нагревательного элемента используют металлическую трубу, через которую просто пропускают поток воды. Вода попутно охлаждает нагреватель, что значительно увеличивает срок его службы.

Преимущества и недостатки прибора

“Плюсов” у вихревого индукционного нагревателя великое множество. Это простая для самостоятельного изготовления схема, повышенная надежность, высокий КПД, относительно низкие затраты на электроэнергию, длительный срок эксплуатации, малая вероятность возникновения поломок и т.п.

Производительность прибора может быть значительной, агрегаты этого типа успешно используются в металлургической промышленности. По скорости нагрева теплоносителя устройства этого типа уверенно соперничают с традиционными электрическими котлами, температура воды в системе быстро достигает необходимого уровня.

Во время функционирования индукционного котла нагреватель слегка вибрирует. Эта вибрация стряхивает со стенок металлической трубы известковый осадок и другие возможные загрязнения, поэтому в очистке такой прибор нуждается крайне редко. Конечно, отопительную систему следует защитить от этих загрязнений с помощью механического фильтра.

Постоянный контакт с водой сводит к минимуму и вероятность перегорания нагревателя, что является довольно частой проблемой для традиционных котлов с ТЭНами. Несмотря на вибрацию, котел работает исключительно тихо, дополнительная шумоизоляция в месте установки прибора не понадобится.

Еще индукционные котлы хороши тем, что они практически никогда не протекают, если только монтаж системы выполнен правильно. Это очень ценное качество для электрического отопления, так как исключает или значительно сокращает вероятность возникновения опасных ситуаций.

Отсутствие протечек обусловлено бесконтактным способом передачи тепловой энергии нагревателю. Теплоноситель с помощью описанной выше технологии можно разогреть чуть ли не до парообразного состояния.

Это обеспечивает достаточную тепловую конвекцию, чтобы стимулировать эффективное перемещение теплоносителя по трубам. В большинстве случаев отопительную систему не придется оборудовать циркуляционным насосом, хотя все зависит от особенностей и схемы конкретной системы отопления.

Иногда циркуляционный насос необходим. Установить прибор относительно несложно. Хотя для этого понадобятся некоторые навыки монтажа электроприборов и отопительных труб. Но есть у этого удобного и надежного прибора ряд недостатков, с которыми также следует считаться.

Например, котел греет не только теплоноситель, но и все окружающее его рабочее пространство. Нужно выделить для такого агрегата отдельное помещение и удалить из него все посторонние предметы. Для человека длительное пребывание в непосредственной близости от работающего котла также может быть небезопасным.

Для работы прибора необходима электроэнергия. В местностях, где свободный доступ к этому благу цивилизации отсутствует, индукционный котел будет бесполезен. Да и там, где наблюдаются частые перебои с электричеством, он продемонстрирует невысокую эффективность. При неосторожном обращении с прибором может произойти взрыв.

Если перегреть теплоноситель, он превратится в пар. В результате давление в системе резко возрастет, чего трубы просто не выдержат, их разорвет. Поэтому для нормальной работы системы прибор следует снабдить как минимум манометром, а еще лучше – устройством аварийного отключения, терморегулятором и т.п.

Все это может заметно повысить стоимость самодельного индукционного котла. Хотя прибор и считается практически бесшумным, это не всегда так. Некоторые модели в силу разных причин могут все же издавать некоторые шумы. Для устройства, выполненного самостоятельно, вероятность такого исхода возрастает.

Шаги изготовления самоделки

Сделать такое устройство самостоятельно не так уж сложно. Для этого понадобится:

  1. Изготовить нагревательный элемент.
  2. Сделать катушку индуктора из медной проволоки.
  3. Взять готовый генератор переменного тока.
  4. Присоединить нагреватель с катушкой к системе отопления.
  5. Подключить катушку к генератору.
  6. Подвести электропитание к системе.
  7. Сделать пробный запуск, чтобы проверить работу агрегата.

В промышленных моделях в качестве нагревателя используется металлическая труба с толстыми стенками, но обеспечить достаточную мощность самодельного устройства, чтобы разогреть такой элемент, очень сложно и большого смысла не имеет. Индукционная катушка способна разогреть любой металл, поэтому нагреватель можно модифицировать.

В качестве корпуса для индукционного нагревателя из сварочного инвертора используют отрезок пластиковой трубы. Он должен быть немного больше в диаметре, чем трубы отопления. Длина трубы для нагревателя может составлять примерно один метр, внутренний диаметр можно варьировать в пределах 50-80 мм.

Для подключения нагревателя к системе следует установить переходники в нижней и верхней части корпуса. Нижнюю часть трубы нужно закрыть решеткой, затем внутрь корпуса кладут наполнитель, состоящий из небольших частичек металла. Получить наполнитель можно, пример, из проволоки, прутка, узкой металлической трубы и т.п.

Длину отрезков можно варьировать произвольно. Чаще всего для этого используют стальную проволоку диаметром 6-8 мм, которую просто нарезают небольшими кусочками. Некоторые мастера рекомендуют нарезать ее длинными прутьями, примерно по 90 см, т.е. почти по длине нагревателя.

Чем выше магнитное сопротивление стали, из которой изготовлена проволока, тем лучше она будет нагреваться. В зависимости от размеров этих кусочков подбирается и защитная сетка, которую монтируют внизу корпуса. Наполнитель засыпают или укладывают в трубу до самого верха. После этого верхнюю часть также закрывают сеткой.

Таким образом, самодельный нагреватель для индукционного котла выглядит как толстая пластиковая труба, набитая кусочками металла и закрытая с двух сторон сеткой. Сверху и снизу нагреватель имеет переходники для подключения к отопительному контуру. Полимерная труба для нагревателя должна иметь достаточно толстые стенки.

Кроме того, любой пластик для этих целей не подойдет, материал должен переносить воздействие довольно сильного нагрева и при этом не выделять в атмосферу или в теплоноситель никаких опасных веществ. Теперь следует изготовить индукционную решетку. Для этого берут медную проволоку и наматывают ее прямо на корпус нагревателя.

Чем больше витков проволоки, тем лучше. Считается, что у индукционной катушки должно быть не менее 90 витков. Индуктор наматывают на трубу очень плотно, между витками не должно быть никакого зазора.

Для обмотки подойдет медный изолированный провод на 1-1,5 мм. Более толстый кабель здесь не нужен, поскольку он и работы по обмотке затруднит, сложнее будет расположить витки вплотную.

Наличие зазоров может привести к возникновению шума из-за вибрации, которой сопровождается работа такого агрегата. Со временем такая ситуация может привести к разрушению изоляции, что вызовет межвитковое замыкание.

Сверху и снизу помимо переходников следует установить запорные краны. Они нужны, чтобы обеспечить возможность при необходимости перекрыть воду в отопительном контуре.

При установке нагревателя следует помнить, что его нижний конец должен быть направлен к обратке, трубы, предназначенной для сбора остывшего теплоносителя в двухтрубной отопительной системе. Самый простой способ обзавестись генератором переменного поля – взять инвертор от сварочного аппарата.

Контакты индукционной катушки присоединяют к полюсам инвертора. Как только к агрегату подведут электропитание и включат его в сеть, самодельный индукционный котел начнет работать.

Для изготовления такого устройства подойдет даже недорогой сварочный аппарат, например, модель китайского производства, которая позволяет регулировать силу тока, начиная с уровня в 10 А. Возле переходника на подаче следует установить датчик терморегулятора. Подключение сварочного инвертора выполняется через этот терморегулятор.

На выходах необходимо поставить выпрямительные диоды. Для этого придется вскрыть корпус сварочного аппарата и припаять к выходу проводники, затем присоединить их к диодам. Если выполнить подключение без диодов, напрямую, то на обмотку поступит ток с выпрямленным напряжением, и катушка будет работать как электромагнит, а не как индуктор.

В некоторых современных сварочных аппаратах имеется датчик касания, который запускает работу в момент, когда электрод касается рабочей поверхности. Этот момент необходимо учесть, чтобы датчик либо срабатывал в нужный момент, либо не влиял на работу самодельного котла.

Если с переделкой сварочного аппарата у неопытного мастера возникают проблемы, ему лучше обратиться за профессиональной консультацией.

Если все сделано правильно, сварочный аппарат в будущем можно использовать по прямому назначению. Нужно будет отпаять проводники с диодами и произвести обратную сборку. Под воздействием высокочастотного переменного тока индукционная катушка создаст магнитное поле.

Металл, находящийся внутри полимерного корпуса начнет нагреваться и передавать тепло воде, которая циркулирует по отопительному контуру. На разогрев теплоносителя устройству понадобится всего несколько минут.

Место для индукционного нагревателя следует правильно выбрать. Агрегат должен располагаться на 800 мм ниже уровня потолка, а от стен и предметов мебели его должно отделять минимум 300 мм.

Несколько слов о безопасности

Самодельные индукционные котлы обычно не снабжены системами контроля и защиты, что делает их небезопасными. Поэтому перед включением агрегата необходимо убедиться, что полость корпуса заполнена жидким теплоносителем.

Если полимерный корпус нагревателя будет подвергаться постоянному нагреву без омывания теплоносителем, он просто расплавится, иногда это приводит не только к деформации нагревателя, но и к его полному повреждению.

Опасным может быть и выпадение раскаленного металлического наполнителя из расплавившегося корпуса. В этом случае придется почти полностью демонтировать устройство и сделать для него новый нагревательный элемент.

Подключение к электропитанию следует выполнять по отдельному кабелю, проведенному от щитка. Разумеется, необходимо тщательно закрыть изоляцией все контакты. Инвертор сварочного аппарата также необходимо заземлить, это важный момент для обеспечения безопасности.

При этом понадобится кабель сечением не менее четырех миллиметров. Некоторые специалисты рекомендуют отдать предпочтение шестимиллиметровому кабелю. Чтобы предотвратить перегрев самодельного индукционного нагревателя из-за отсутствия в системе воды, рекомендуется установить на входе в нагреватель клапан избыточного давления.

Самодельное устройство этого типа, не снабженное специальными средствами защиты, это потенциально опасный объект, который требует постоянного контроля. Поэтому стоит потратить немного больше денег, но приобрести необходимые устройства.

При этом не помешает оценить затраты, возможно, покупка готового индукционного котла обойдется не намного дороже. Промышленные устройства обычно снабжены всей необходимой защитой.

Особенности и пошаговая технология изготовления еще одного варианта самодельного индукционного котла для системы отопления приведены здесь.

Выводы и полезное видео по теме

Ролик #1. Обзор принципов индукционного нагрева:

Ролик #2. Интересный вариант изготовления индукционного нагревателя:

Для установки индукционного нагревателя не нужно получать разрешение контролирующих органов, промышленные модели таких устройств вполне безопасны, они подходят и для частного дома, и для обычной квартиры. Но владельцам самодельных агрегатов не следует забывать о технике безопасности.

Комментируйте, пожалуйста, предложенный нами к ознакомлению материал. Задавайте вопросы по интересным или неясным моментам. Возможно, у вас есть собственный опыт в сооружении или в установке индукционного котла? Рассказать и разместить уникальные фото вы можете в блоке для комментариев, расположенном ниже.

Ссылка на основную публикацию